期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
高供体电解质赋予石墨阴离子衍生界面以实现稳定钾储存
1
作者 杨倩 李梦浩 +8 位作者 雷凯翔 李思远 刘正 褚绅旭 张阳洋 江克柱 谷猛 李福军 郑士建 《Science China Materials》 SCIE EI CAS CSCD 2023年第3期932-943,共12页
石墨负极有望应用于钾离子电池,但受到循环过程中不可控的体积波动和枝晶生长的限制.在此,我们利用酰胺基电解质构建了具有高机械强度和离子电导率的阴离子衍生界面,可有效解决这些问题.酰胺分子的高供体数可以加强溶剂分子与K+的溶剂... 石墨负极有望应用于钾离子电池,但受到循环过程中不可控的体积波动和枝晶生长的限制.在此,我们利用酰胺基电解质构建了具有高机械强度和离子电导率的阴离子衍生界面,可有效解决这些问题.酰胺分子的高供体数可以加强溶剂分子与K+的溶剂化作用,确保更多的阴离子进入初级溶剂化鞘层.缩短的溶剂与阴离子距离有利于电子从溶剂化的K+转移到阴离子,进而促进阴离子还原.生成的富含无机物的界面缓冲了充放电过程中的体积变化,抑制了K枝晶的生成,促进了钾离子的扩散.基于此,K//K对称电池以0.15 V的极化电位稳定循环超过2800 h.石墨电极实现了C?KC60?KC48?KC36?KC_(2)4?KC8的高度可逆相变,在循环100周后仍保持了217.6 mA h g-1的高放电容量和86.9%的容量保持率.组装的全电池也表现出52.5 W h kg-1的高能量密度.这项工作突出了界面结构的重要性,并为设计高性能电解质提供了全新策略. 展开更多
关键词 充放电过程 放电容量 溶剂化作用 离子电导率 循环过程 极化电位 石墨电极 可逆相变
原文传递
Facile synthesis and electrochemical sodium storage of CoS2 micro/nano-structures 被引量:10
2
作者 Xue Liu Kai Zhang +3 位作者 kaixiang lei Fujun Li Zhanliang Tao Jun Chen 《Nano Research》 SCIE EI CAS CSCD 2016年第1期198-206,共9页
We report the synthesis and electrochemical sodium storage of cobalt disulfide (COS2) with various micro/nano-structures. CoS2 with microscale sizes are either assembled by nanoparticles (P-CoS2) via a facile solv... We report the synthesis and electrochemical sodium storage of cobalt disulfide (COS2) with various micro/nano-structures. CoS2 with microscale sizes are either assembled by nanoparticles (P-CoS2) via a facile solvothermal route or nano- octahedrons constructed solid (O-COS2) and hollow microstructures (H-CoS2) fabricated by hydrothermal methods. Among three morphologies, H-CoS2 exhibits the largest discharge capacities and best rate performance as anode of sodium-ion batteries (SIBs). Furthermore, H-CoS2 delivers a capacity of 690 mA.h.g 1 at 1 A·g 1 after 100 cycles in a potential range of 0.1-3.0 V, and N240 mA.h.g-1 over 800 cycles in the potential window of 1.0-3.0 V. This cycling difference mainly lies in the two discharge plateaus observed in 0.1-3.0 V and one discharge plateau in 1.0-3.0 V. To interpret the reactions, X-ray diffraction (XRD) and transmission electron microscopy (TEM) are applied. The results show that at the first plateau around 1.4 V, the insertion reaction (COS2 + xNa* + xe NaxCoS2) Occurs; while at the second plateau around 0.6 V, the conversion reaction (NaxCoS2 + (4 - x) Na+ + (4 - x)e -~ Co + 2Na2S) takes place. This provides insights for electrochemical sodium storage of CoS2 as the anode of SIBs. 展开更多
关键词 cobalt disulfide micro/nano-structures sodium storagemechanism cycling stability
原文传递
Synthesis of size-controlled CoMn2O4 quantum dots supported on carbon nanotubes for electrocatalytic oxygen reduction/evolution 被引量:3
3
作者 Jiajia Shi kaixiang lei +3 位作者 Weiyi Sun Fujun Li Fangyi Cheng Jun Chen 《Nano Research》 SCIE EI CAS CSCD 2017年第11期3836-3847,共12页
A combined hot-injection and heat-up method was developed to synthesize monodisperse and uniform CoMn2O4 quantum dots (CMO QDs).CMO QDs with average size of 2.0,3.9,and 5.4 nm were selectively obtained at 80,90,and ... A combined hot-injection and heat-up method was developed to synthesize monodisperse and uniform CoMn2O4 quantum dots (CMO QDs).CMO QDs with average size of 2.0,3.9,and 5.4 nm were selectively obtained at 80,90,and 105 ℃,respectively.The CMO QDs supported on carbon nanotubes (CNTs) were employed as catalysts for the oxygen reduction/evolution reaction (ORR/OER) in alkaline solution to investigate their size-performance relationship.The results revealed that the amount of surface-adsorbed oxygen and the band gap energy,which affect the charge transfer in the oxygen electrocatalysis processes,strongly depend on the size of the CMO QDs.The CMO-3.9/CNT hybrid,consisting of CNT-supported CMO QDs of 3.9 nm size,possesses a moderate amount of surfaceadsorbed oxygen,a lower band gap energy,and a larger charge carrier concentration,and exhibits the highest electrocatalytic activity among the hybrid materials investigated.Moreover,the CMO-3.9/CNT hybrid displays ORR and OER performances similar to those of the benchmark Pt/C and RuO2 catalysts,respectively,due to the strong carbon-oxide interactions and the high dispersion of CoMn2O4 QDs on the carbon substrate;this reveals the huge potential of the CMO-3.9/CNT hybrid as a bifunctional OER/ORR electrocatalyst.The present results highlight the importance of controlling the size of metal oxide nanodots in the design of active oxygen electrocatalysts based on spinel-type,nonprecious metal oxides. 展开更多
关键词 size effect spinel oxide quantum dots electrocatalysis
原文传递
A Hybrid Na//K^(+)-Containing Electrolyte//O_(2) Battery with High Rechargeability and Cycle Stability 被引量:1
4
作者 Zhuo Zhu Xiaomeng Shi +3 位作者 Dongdong Zhu Liubin Wang kaixiang lei Fujun Li 《Research》 EI CAS 2019年第1期1217-1225,共9页
Na-O_(2) and K-O_(2) batteries have attracted extensive attention in recent years.However,the parasitic reactions involving the discharge product of NaO_(2) or K anode with electrolytes and the severe Na or K dendrite... Na-O_(2) and K-O_(2) batteries have attracted extensive attention in recent years.However,the parasitic reactions involving the discharge product of NaO_(2) or K anode with electrolytes and the severe Na or K dendrites plague their rechargeability and cycle stability.Herein,we report a hybrid Na//K^(+)-containing electrolyte//O_(2) battery consisting of a Na anode,1.0 M of potassium trifate in diglyme,and a porous carbon cathode.Upon discharging,KO_(2) is preferentially produced via oxygen reduction in the cathode with Na+stripped from the Na anode,and reversely,the KO_(2) is electrochemically decomposed with Na+plated back onto the anode.Te new reaction pathway can circumvent the parasitic reactions involving instable NaO_(2) and active K anode,and alternatively,the good stability and conductivity of KO_(2) and stable Na stripping/plating in the presence of K^(+) enable the hybrid battery to exhibit an average discharge/charge voltage gap of 0.15 V,high Coulombic efciency of>96%,and superior cycling stability of 120 cycles.Tis will pave a new pathway to promote metal-air batteries. 展开更多
关键词 BATTERY BATTERY CHARGE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部