The disparity in the transfer of carriers(electrons/mass)during the reaction in zinc-air batteries(ZABs)results in sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),along with e...The disparity in the transfer of carriers(electrons/mass)during the reaction in zinc-air batteries(ZABs)results in sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),along with elevated overpotentials,thereby imposing additional constraints on its utilization.Therefore,the pre-design and target-development of inexpensive,high-performance,and long-term stable bifunctional catalysts are urgently needed.In this work,an apically guiding dual-functional electrocatalyst(Ag-FeN_(x)-N-C)was prepared,in which a hierarchical porous nitrogen-doped carbon with three-dimensional(3D)hollow star-shaped structure is used as a substrate and high-conductivity Ag nanoparticles are coupled with iron nitride(FeN_(x))nanoparticles.Theoretical calculations indicate that the Mott-Schottky heterojunction as an inherent electric field comes from the two-phase bound of Ag and FeN_(x),of which electron accumulation in the FeN_(x)phase region and electron depletion in the Ag phase region promote orientated-guiding charge migration.The effective modulation of local electronic structures felicitously reforms the d-band electron-group distribution,and intellectually tunes the masstransfer reaction energy barriers for both ORR/OER.Additionally,the hollow star-s haped hierarchical porous structure provides an apical region for fast mass transfer.Experimental results show that the halfwave potential for ORR is 0.914 V,and the overpotential for OER is only 327 mV at 10 mA cm^(-2).A rechargeable ZAB with Ag-FeN_(x)-N-C as the air cathode demonstrates long-term cycling performance exceeding 1500 cycles(500 h),with a power density of 180 mW cm^(-2).Moreover,when employing AgFeN_(x)-N-C as the air cathode,flexible ZABs demonstrate a notable open-circuit voltage of 1.42 V and achieve a maximum power density of 65.6 mW cm^(-2).Ag-FeN_(x)-N-C shows guiding electron/mass transfer route and apical reaction microenvironment for the electrocatalyst architecture in the exploration prospects of ZABs.展开更多
The conventional theory of concerted evolution has been used to explain the lack of sequence variation in ribosomal RNA(rRNA)genes across diverse eukaryotic species.However,recent investigations into rRNA genes in fla...The conventional theory of concerted evolution has been used to explain the lack of sequence variation in ribosomal RNA(rRNA)genes across diverse eukaryotic species.However,recent investigations into rRNA genes in flatfish genome have resulted in controversial findings.This study focuses on 18S rRNA genes of the widely distributed tongue sole,Cynoglossus abbreviatus(Pleuronectiformes:Cynoglossidae),aiming to explore sequence polymorphism.Five distinct 18S rDNA sequence types(Type A,B,R1,R2,and R3)were identified,suggesting a departure from concerted evolution.A combination of general criteria and variations in highly conserved regions were employed to detect pseudogenes.The results pinpointed Type A sequences as potential pseudogenes due to significant sequence variations and deviations in secondary structure within highly conserved regions.Three types(Type R1,R2,and R3)were identified as recombinants between Type A and B sequences,with simple crossing over and gene conversion as the most likely recombination mechanisms.These findings not only contribute to rRNA pseudogene identification but also shed light on the evolutionary dynamics of rRNA genes in teleost genomes.展开更多
The existence of alkali metals in fl ue gases originating from stationary sources can result in catalyst deactivation in the low-temperature selective catalytic reduction(SCR)of nitrogen oxides(NO_(x)).It is widely ac...The existence of alkali metals in fl ue gases originating from stationary sources can result in catalyst deactivation in the low-temperature selective catalytic reduction(SCR)of nitrogen oxides(NO_(x)).It is widely accepted that alkali metal poisoning causes damage to the acidic sites of catalysts.Therefore,in this study,a series of CoMn catalysts doped with heteropolyacids(HPAs)were prepared using the coprecipitation method.Among these,CoMnHPMo exhibited superior catalytic performance for SCR and over 95%NO_(x) conversion at 150-300.Moreover,it exhibited excellent catalytic activity and stability after alkali poisoning,demonstrating outstanding alkali metal resistance.The characterization indicated that HPMo increased the specifi c surface area of the catalyst,which provided abundant adsorption sites for NO_(x) and NH_(3).Comparing catalysts before and after poisoning,CoMnHPMo enhanced its alkali metal resistance by sacrifi cing Brønsted acid sites to protect its Lewis acid sites.In situ DRIFTS was used to study the reaction pathways of the catalysts.The results showed that CoMnHPMo maintained high NH_(3) adsorption capacity after K poisoning and then reacted rapidly with NO intermediates to ensure that the active sites were not covered.Consequently,SCR performance was ensured even after alkali metal poisoning.In sum-mary,this research proposed a simple method for the design of an alkali-resistant NH_(3)-SCR catalyst with high activity at low temperatures.展开更多
Generally,a teleostean group(e.g.,family or genus)owns one type or a set of similar mitochondrial gene arrangement.It is interesting,however,that four different types of gene arrangement have been found in the mitocho...Generally,a teleostean group(e.g.,family or genus)owns one type or a set of similar mitochondrial gene arrangement.It is interesting,however,that four different types of gene arrangement have been found in the mitochondrial genome(mitogenome)of Cynoglossidae species.So far,the possible mechanisms of mitogenomic gene rearrangement and its potential implications have aroused widespread attention and caused lots of controversy.Here,a total of 21 Cynoglossidae mitogenomes and a newly sequenced mitogenome of Cynoglossus puncticpes(Pleuronectiformes:Cynoglossidae)were compared.The length ranges from 16417 bp to 18369 bp,which is mainly caused by the length heteroplasmy of control region(CR).Further analysis reveals that the difference of tandem repeats acts as a determining factor resulting in the length heterogeneity.Like most gene rearrangements of Cynoglossinae mitogenomes,tRNA-Gln gene encoded by the L-strand has translocated to the H-strand(Q inversion),accompanied by the translocation of CR in C.puncticpes mitogenome.The typical IQM order(tRNA-Ile-Gln-Met)changed to QIM order.Tandem duplication/random loss and mitochondrial recombination were accepted as the most possible models to account for the rearrangements in C.puncticpes mitogenome.Phylogenetic trees showed a strong correlation between the gap spacer in the rearranged QIM area and phylogeny,which provides a fresh idea for phylogenetic studies in future.展开更多
Large,3D curved electronics are a trend of the microelectronic industry due to their unique ability to conformally coexist with complex surfaces while retaining the electronic functions of 2D planar integrated circuit...Large,3D curved electronics are a trend of the microelectronic industry due to their unique ability to conformally coexist with complex surfaces while retaining the electronic functions of 2D planar integrated circuit technologies.However,these curved electronics present great challenges to the fabrication processes.Here,we propose a reconfigurable,mask-free,conformal fabrication strategy with a robot-like system,called robotized‘transfer-and-jet’printing,to assemble diverse electronic devices on complex surfaces.This novel method is a ground-breaking advance with the unique capability to integrate rigid chips,flexible electronics,and conformal circuits on complex surfaces.Critically,each process,including transfer printing,inkjet printing,and plasma treating,are mask-free,digitalized,and programmable.The robotization techniques,including measurement,surface reconstruction and localization,and path programming,break through the fundamental constraints of 2D planar microfabrication in the context of geometric shape and size.The transfer printing begins with the laser lift-off of rigid chips or flexible electronics from donor substrates,which are then transferred onto a curved surface via a dexterous robotic palm.Then the robotic electrohydrodynamic printing directly writes submicrometer structures on the curved surface.Their permutation and combination allow versatile conformal microfabrication.Finally,robotized hybrid printing is utilized to successfully fabricate a conformal heater and antenna on a spherical surface and a flexible smart sensing skin on a winged model,where the curved circuit,flexible capacitive and piezoelectric sensor arrays,and rigid digital–analog conversion chips are assembled.Robotized hybrid printing is an innovative printing technology,enabling additive,noncontact and digital microfabrication for 3D curved electronics.展开更多
Inorganic-based micro light-emitting diodes (microLEDs) offer more fascinating properties and unique demands in next-generation displays. However, the small size of the microLED chip (1–100 µm) makes it extremel...Inorganic-based micro light-emitting diodes (microLEDs) offer more fascinating properties and unique demands in next-generation displays. However, the small size of the microLED chip (1–100 µm) makes it extremely challenging for high efficiency and low cost to accurately, selectively, integrate millions of microLED chips. Recent impressive technological advances have overcome the drawbacks of traditional pick-and-place techniques when they were utilized in the assembly of microLED display, including the most broadly recognized laser lift-off technique, contact micro-transfer printing (µTP) technique, laser non-contact µTP technique, and self-assembly technique. Herein, we firstly review the key developments in mass transfer technique and highlight their potential value, covering both the state-of-the-art devices and requirements for mass transfer in the assembly of the ultra-large-area display and virtual reality glasses. We begin with the significant challenges and the brief history of mass transfer technique, and expand that mass transfer technique is composed of two major techniques, namely, the epitaxial Lift-off technique and the pick-and-place technique. The basic concept and transfer effects for each representative epitaxial Lift-off and pick-and-place technique in mass transfer are then overviewed separately. Finally, the potential challenges and future research directions of mass transfer are discussed.展开更多
A novel Er:YAG laser system operating at 1645 nm with high pulse-repetition-frequency(PRF)of kHz level is demonstrated.A ring cavity with double gain medium end-pumped by two fiber lasers is utilized to obtain high pu...A novel Er:YAG laser system operating at 1645 nm with high pulse-repetition-frequency(PRF)of kHz level is demonstrated.A ring cavity with double gain medium end-pumped by two fiber lasers is utilized to obtain high pulse energy.A novel‘triple-reflection’configuration on a piezoelectric actuator(PZT)is adopted to achieve high-repetition-rate at 3-kHz operation with the ramp-fire locking method.Single frequency pulses with maximum average power of 18.3 W at 3 kHz are obtained,and the pulse duration time is 318 ns.The full line width at half maximum(FWHM)of the pulses measured by the heterodyne technique is 1.71 MHz at 3 kHz.To the best of our knowledge,this is the highest PRF single-frequency laser pulses achieved based Er:YAG gain medium.展开更多
Due to strong synergistic effect of the elements,a series of XEuMnO_(x) ternary oxides(X=Ce,Ni,Co,Sb,Sn,Mo) were synthesized by one-pot co-precipitation method,and composite components were identified and optimized to...Due to strong synergistic effect of the elements,a series of XEuMnO_(x) ternary oxides(X=Ce,Ni,Co,Sb,Sn,Mo) were synthesized by one-pot co-precipitation method,and composite components were identified and optimized to maintain high activity and superior SO_(2)and H_(2)O endurance in selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR).NO_(x)conversion of CeEuMnO_(x) ternary oxide catalysts attains more than 90% at 100-250℃,and finally achieves 74%under existence of 50×10^(-6)SO_(2) and 10 vol% H_(2)O at 230℃.The facile electron transfer through redox cycle of Mn^(3+)+Ce^(4+)■Mn4++Ce^(3+) and enhanced oxygen mobility can promote formation of more Mn species in high oxidation state and chemisorbed oxygen,accelerating oxidation of NO and the adsorbed NO_(2) formed can facilitate"fast SCR"reaction to improve low-temperature activity.In situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)study reveals that addition of Ce to EuMnO_(x)catalyst boosts adsorption of NH_(3)and NO_(x)species.NH_(3)species are activated as crucial intermediate(NH_(2))to promote NH_(3)-SCR reaction.This research provides a novel material for practical deNO_(x)application of stationary source combustion flue gas in the future.展开更多
With advantages of low costs and high energy density,Li–S batteries are considered as one of the most promising energy storage devices.However,Li_(2)S_(2) with a high dissociation energy and insulative properties is ...With advantages of low costs and high energy density,Li–S batteries are considered as one of the most promising energy storage devices.However,Li_(2)S_(2) with a high dissociation energy and insulative properties is hard to convert into Li_(2)S,resulting in underutilization of sulfur capacity.Herein,Co-Mo_(2)C@C yolk–shell spheres as nanoreactors were designed to confront this challenge rationally.The Co-Mo_(2)C@C-induced Li_(2)S_(1/2) nucleation and growth in the three-dimensional process and the cathode produced more Li_(2)S after full discharge.Experimental studies and theoretical calculations reveal that the conversion barrier from Li_(2)S_(2) into Li_(2)S was lowered while the diffusion of lithium ions and electron transfer accelerated when using the Co-Mo_(2)C@C catalyst.Based on the above advantages,the Co-Mo_(2)C@C/S cathode exhibits a high reversible capacity and excellent cyclic stability,such as an initial specific capacity of 1200 mAh g^(−1) at 0.1 C with 709 mAh g^(−1) at 1.0 C after 1000 cycles with a low capacity fading rate of 0.04%per cycle.Even at high densities of 3.0 C and 5.0 C,the specific capacities are 647.6 and 557.7 mAh g^(−1) after 400 cycles,respectively.Impressively,it also shows ca.770 and 900 mAh g^(−1) at 0.2 C after 50 cycles with high sulfur loadings of 4.2 and 5.1 mg cm−2,respectively.The present work may provide new insights into the design of nanoreactors to promote Li_(2)S_(1/2) growth in a three-dimensional process and accelerate conversion from solid Li_(2)S_(2) to solid Li_(2)S in high performance Li–S batteries.展开更多
We develop a family of characteristic discontinuous Galerkin methods for transient advection-diffusion equations,including the characteristic NIPG,OBB,IIPG,and SIPG schemes.The derived schemes possess combined advanta...We develop a family of characteristic discontinuous Galerkin methods for transient advection-diffusion equations,including the characteristic NIPG,OBB,IIPG,and SIPG schemes.The derived schemes possess combined advantages of EulerianLagrangian methods and discontinuous Galerkin methods.An optimal-order error estimate in the L2 norm and a superconvergence estimate in a weighted energy norm are proved for the characteristic NIPG,IIPG,and SIPG scheme.Numerical experiments are presented to confirm the optimal-order spatial and temporal convergence rates of these schemes as proved in the theorems and to show that these schemes compare favorably to the standard NIPG,OBB,IIPG,and SIPG schemes in the context of advection-diffusion equations.展开更多
基金the financial support of the National Natural Science Foundation of China(52002079,22378074,22179025 and U20A20340)the Guangdong Basic and Applied Basic Research Foundation(2022A1515140085)+2 种基金the Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology(FC202209)the Guangzhou Hongmian Project(HMJH-20200012)the Foshan Introducing Innovative and Entrepreneurial Teams(1920001000108)。
文摘The disparity in the transfer of carriers(electrons/mass)during the reaction in zinc-air batteries(ZABs)results in sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),along with elevated overpotentials,thereby imposing additional constraints on its utilization.Therefore,the pre-design and target-development of inexpensive,high-performance,and long-term stable bifunctional catalysts are urgently needed.In this work,an apically guiding dual-functional electrocatalyst(Ag-FeN_(x)-N-C)was prepared,in which a hierarchical porous nitrogen-doped carbon with three-dimensional(3D)hollow star-shaped structure is used as a substrate and high-conductivity Ag nanoparticles are coupled with iron nitride(FeN_(x))nanoparticles.Theoretical calculations indicate that the Mott-Schottky heterojunction as an inherent electric field comes from the two-phase bound of Ag and FeN_(x),of which electron accumulation in the FeN_(x)phase region and electron depletion in the Ag phase region promote orientated-guiding charge migration.The effective modulation of local electronic structures felicitously reforms the d-band electron-group distribution,and intellectually tunes the masstransfer reaction energy barriers for both ORR/OER.Additionally,the hollow star-s haped hierarchical porous structure provides an apical region for fast mass transfer.Experimental results show that the halfwave potential for ORR is 0.914 V,and the overpotential for OER is only 327 mV at 10 mA cm^(-2).A rechargeable ZAB with Ag-FeN_(x)-N-C as the air cathode demonstrates long-term cycling performance exceeding 1500 cycles(500 h),with a power density of 180 mW cm^(-2).Moreover,when employing AgFeN_(x)-N-C as the air cathode,flexible ZABs demonstrate a notable open-circuit voltage of 1.42 V and achieve a maximum power density of 65.6 mW cm^(-2).Ag-FeN_(x)-N-C shows guiding electron/mass transfer route and apical reaction microenvironment for the electrocatalyst architecture in the exploration prospects of ZABs.
基金The Basic Scientific Research Operating Expenses of Zhejiang Provincial Universities under contract 2021JZ003the Zhoushan Science and Technology Bureau under contract No.2021C21007+1 种基金the Natural Science Foundation of Zhejiang Province under contract Y21C190023the National Natural Science Foundation of China under contract 31272273.
文摘The conventional theory of concerted evolution has been used to explain the lack of sequence variation in ribosomal RNA(rRNA)genes across diverse eukaryotic species.However,recent investigations into rRNA genes in flatfish genome have resulted in controversial findings.This study focuses on 18S rRNA genes of the widely distributed tongue sole,Cynoglossus abbreviatus(Pleuronectiformes:Cynoglossidae),aiming to explore sequence polymorphism.Five distinct 18S rDNA sequence types(Type A,B,R1,R2,and R3)were identified,suggesting a departure from concerted evolution.A combination of general criteria and variations in highly conserved regions were employed to detect pseudogenes.The results pinpointed Type A sequences as potential pseudogenes due to significant sequence variations and deviations in secondary structure within highly conserved regions.Three types(Type R1,R2,and R3)were identified as recombinants between Type A and B sequences,with simple crossing over and gene conversion as the most likely recombination mechanisms.These findings not only contribute to rRNA pseudogene identification but also shed light on the evolutionary dynamics of rRNA genes in teleost genomes.
基金This work was supported by the National Key R&D Program of China(Nos.2022YFB3504100 and 2022YFB3504102)Natural National Science Foundation of China(No.22276133)+1 种基金Natural National Science Foundation of China(No.U20A20132)Natural National Science Foundation of China(No.52106180).
文摘The existence of alkali metals in fl ue gases originating from stationary sources can result in catalyst deactivation in the low-temperature selective catalytic reduction(SCR)of nitrogen oxides(NO_(x)).It is widely accepted that alkali metal poisoning causes damage to the acidic sites of catalysts.Therefore,in this study,a series of CoMn catalysts doped with heteropolyacids(HPAs)were prepared using the coprecipitation method.Among these,CoMnHPMo exhibited superior catalytic performance for SCR and over 95%NO_(x) conversion at 150-300.Moreover,it exhibited excellent catalytic activity and stability after alkali poisoning,demonstrating outstanding alkali metal resistance.The characterization indicated that HPMo increased the specifi c surface area of the catalyst,which provided abundant adsorption sites for NO_(x) and NH_(3).Comparing catalysts before and after poisoning,CoMnHPMo enhanced its alkali metal resistance by sacrifi cing Brønsted acid sites to protect its Lewis acid sites.In situ DRIFTS was used to study the reaction pathways of the catalysts.The results showed that CoMnHPMo maintained high NH_(3) adsorption capacity after K poisoning and then reacted rapidly with NO intermediates to ensure that the active sites were not covered.Consequently,SCR performance was ensured even after alkali metal poisoning.In sum-mary,this research proposed a simple method for the design of an alkali-resistant NH_(3)-SCR catalyst with high activity at low temperatures.
基金The Natural Science Foundation of Zhejiang Province under contract No.LY21C190007the Basic Scientific Research Operating Expenses of Zhejiang Provincial Universities under contract No.2021JZ003the Zhoushan Science and Technology Bureau under contract No.2021C21007。
文摘Generally,a teleostean group(e.g.,family or genus)owns one type or a set of similar mitochondrial gene arrangement.It is interesting,however,that four different types of gene arrangement have been found in the mitochondrial genome(mitogenome)of Cynoglossidae species.So far,the possible mechanisms of mitogenomic gene rearrangement and its potential implications have aroused widespread attention and caused lots of controversy.Here,a total of 21 Cynoglossidae mitogenomes and a newly sequenced mitogenome of Cynoglossus puncticpes(Pleuronectiformes:Cynoglossidae)were compared.The length ranges from 16417 bp to 18369 bp,which is mainly caused by the length heteroplasmy of control region(CR).Further analysis reveals that the difference of tandem repeats acts as a determining factor resulting in the length heterogeneity.Like most gene rearrangements of Cynoglossinae mitogenomes,tRNA-Gln gene encoded by the L-strand has translocated to the H-strand(Q inversion),accompanied by the translocation of CR in C.puncticpes mitogenome.The typical IQM order(tRNA-Ile-Gln-Met)changed to QIM order.Tandem duplication/random loss and mitochondrial recombination were accepted as the most possible models to account for the rearrangements in C.puncticpes mitogenome.Phylogenetic trees showed a strong correlation between the gap spacer in the rearranged QIM area and phylogeny,which provides a fresh idea for phylogenetic studies in future.
基金The authors acknowledge support from the National Nat-ural Science Foundation of China(51635007,51925503,51705179)Natural Science Foundation of Hubei Province of China(2020CFA028).
文摘Large,3D curved electronics are a trend of the microelectronic industry due to their unique ability to conformally coexist with complex surfaces while retaining the electronic functions of 2D planar integrated circuit technologies.However,these curved electronics present great challenges to the fabrication processes.Here,we propose a reconfigurable,mask-free,conformal fabrication strategy with a robot-like system,called robotized‘transfer-and-jet’printing,to assemble diverse electronic devices on complex surfaces.This novel method is a ground-breaking advance with the unique capability to integrate rigid chips,flexible electronics,and conformal circuits on complex surfaces.Critically,each process,including transfer printing,inkjet printing,and plasma treating,are mask-free,digitalized,and programmable.The robotization techniques,including measurement,surface reconstruction and localization,and path programming,break through the fundamental constraints of 2D planar microfabrication in the context of geometric shape and size.The transfer printing begins with the laser lift-off of rigid chips or flexible electronics from donor substrates,which are then transferred onto a curved surface via a dexterous robotic palm.Then the robotic electrohydrodynamic printing directly writes submicrometer structures on the curved surface.Their permutation and combination allow versatile conformal microfabrication.Finally,robotized hybrid printing is utilized to successfully fabricate a conformal heater and antenna on a spherical surface and a flexible smart sensing skin on a winged model,where the curved circuit,flexible capacitive and piezoelectric sensor arrays,and rigid digital–analog conversion chips are assembled.Robotized hybrid printing is an innovative printing technology,enabling additive,noncontact and digital microfabrication for 3D curved electronics.
文摘Inorganic-based micro light-emitting diodes (microLEDs) offer more fascinating properties and unique demands in next-generation displays. However, the small size of the microLED chip (1–100 µm) makes it extremely challenging for high efficiency and low cost to accurately, selectively, integrate millions of microLED chips. Recent impressive technological advances have overcome the drawbacks of traditional pick-and-place techniques when they were utilized in the assembly of microLED display, including the most broadly recognized laser lift-off technique, contact micro-transfer printing (µTP) technique, laser non-contact µTP technique, and self-assembly technique. Herein, we firstly review the key developments in mass transfer technique and highlight their potential value, covering both the state-of-the-art devices and requirements for mass transfer in the assembly of the ultra-large-area display and virtual reality glasses. We begin with the significant challenges and the brief history of mass transfer technique, and expand that mass transfer technique is composed of two major techniques, namely, the epitaxial Lift-off technique and the pick-and-place technique. The basic concept and transfer effects for each representative epitaxial Lift-off and pick-and-place technique in mass transfer are then overviewed separately. Finally, the potential challenges and future research directions of mass transfer are discussed.
基金the National Key Research and Development Program of China(Grant No.2017YFB0405203)the National Natural Science Foundation of China(Grant No.61627821).
文摘A novel Er:YAG laser system operating at 1645 nm with high pulse-repetition-frequency(PRF)of kHz level is demonstrated.A ring cavity with double gain medium end-pumped by two fiber lasers is utilized to obtain high pulse energy.A novel‘triple-reflection’configuration on a piezoelectric actuator(PZT)is adopted to achieve high-repetition-rate at 3-kHz operation with the ramp-fire locking method.Single frequency pulses with maximum average power of 18.3 W at 3 kHz are obtained,and the pulse duration time is 318 ns.The full line width at half maximum(FWHM)of the pulses measured by the heterodyne technique is 1.71 MHz at 3 kHz.To the best of our knowledge,this is the highest PRF single-frequency laser pulses achieved based Er:YAG gain medium.
基金financially supported by the National Natural Science Foundation of China(52173235)Venture&Innovation Support Program for Chongqing Overseas Returnees(CX2021018)Science and Technology Innovation and Improving Project of Army Medical University(2021XJS24)。
基金Project supported by the National Key R&D Program of China(2019YFC1904100,2019YFC1904102,2019YFC1903900,2019YFC1903902)the National Natural Science Foundation of China(U20A20132,52106180,22076136)+1 种基金the Hebei Province Major Scientific and Technological Achievement Transformation Fund Support Project(2021004012 A)the Central Government Guides the Local Science and Technology Development Fund Project(206Z3702G).
文摘Due to strong synergistic effect of the elements,a series of XEuMnO_(x) ternary oxides(X=Ce,Ni,Co,Sb,Sn,Mo) were synthesized by one-pot co-precipitation method,and composite components were identified and optimized to maintain high activity and superior SO_(2)and H_(2)O endurance in selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR).NO_(x)conversion of CeEuMnO_(x) ternary oxide catalysts attains more than 90% at 100-250℃,and finally achieves 74%under existence of 50×10^(-6)SO_(2) and 10 vol% H_(2)O at 230℃.The facile electron transfer through redox cycle of Mn^(3+)+Ce^(4+)■Mn4++Ce^(3+) and enhanced oxygen mobility can promote formation of more Mn species in high oxidation state and chemisorbed oxygen,accelerating oxidation of NO and the adsorbed NO_(2) formed can facilitate"fast SCR"reaction to improve low-temperature activity.In situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)study reveals that addition of Ce to EuMnO_(x)catalyst boosts adsorption of NH_(3)and NO_(x)species.NH_(3)species are activated as crucial intermediate(NH_(2))to promote NH_(3)-SCR reaction.This research provides a novel material for practical deNO_(x)application of stationary source combustion flue gas in the future.
基金supported by the Key-Area Research and Development Program of Guangdong Province(grant no.2020B0909-19005)the National Natural Science Foundation of China(grant nos.21975056 and 22179025)+1 种基金The Major and Special Project in the Field of Intelligent Manufacturing of the Universities in Guangdong Province(grant no.2020ZDZX2067)the Natural Science Foundation of Huizhou University(grant no.HZU202004).
文摘With advantages of low costs and high energy density,Li–S batteries are considered as one of the most promising energy storage devices.However,Li_(2)S_(2) with a high dissociation energy and insulative properties is hard to convert into Li_(2)S,resulting in underutilization of sulfur capacity.Herein,Co-Mo_(2)C@C yolk–shell spheres as nanoreactors were designed to confront this challenge rationally.The Co-Mo_(2)C@C-induced Li_(2)S_(1/2) nucleation and growth in the three-dimensional process and the cathode produced more Li_(2)S after full discharge.Experimental studies and theoretical calculations reveal that the conversion barrier from Li_(2)S_(2) into Li_(2)S was lowered while the diffusion of lithium ions and electron transfer accelerated when using the Co-Mo_(2)C@C catalyst.Based on the above advantages,the Co-Mo_(2)C@C/S cathode exhibits a high reversible capacity and excellent cyclic stability,such as an initial specific capacity of 1200 mAh g^(−1) at 0.1 C with 709 mAh g^(−1) at 1.0 C after 1000 cycles with a low capacity fading rate of 0.04%per cycle.Even at high densities of 3.0 C and 5.0 C,the specific capacities are 647.6 and 557.7 mAh g^(−1) after 400 cycles,respectively.Impressively,it also shows ca.770 and 900 mAh g^(−1) at 0.2 C after 50 cycles with high sulfur loadings of 4.2 and 5.1 mg cm−2,respectively.The present work may provide new insights into the design of nanoreactors to promote Li_(2)S_(1/2) growth in a three-dimensional process and accelerate conversion from solid Li_(2)S_(2) to solid Li_(2)S in high performance Li–S batteries.
文摘We develop a family of characteristic discontinuous Galerkin methods for transient advection-diffusion equations,including the characteristic NIPG,OBB,IIPG,and SIPG schemes.The derived schemes possess combined advantages of EulerianLagrangian methods and discontinuous Galerkin methods.An optimal-order error estimate in the L2 norm and a superconvergence estimate in a weighted energy norm are proved for the characteristic NIPG,IIPG,and SIPG scheme.Numerical experiments are presented to confirm the optimal-order spatial and temporal convergence rates of these schemes as proved in the theorems and to show that these schemes compare favorably to the standard NIPG,OBB,IIPG,and SIPG schemes in the context of advection-diffusion equations.