Heat stress(HS) has serious negative effects on plant development and has become a major threat to agriculture. A rapid transcriptional regulatory cascade has evolved in plants in response to HS. Nuclear Factor-Y(NF-Y...Heat stress(HS) has serious negative effects on plant development and has become a major threat to agriculture. A rapid transcriptional regulatory cascade has evolved in plants in response to HS. Nuclear Factor-Y(NF-Y) complexes are critical for this mechanism, but how NF-Y complexes are regulated remains unclear.In this study, we identified NF-YC10(NF-Y subunit C10), a central regulator of the HS response in Arabidopsis thaliana, as a substrate of SUMOylation, an important post-translational modification. Biochemical analysis showed that the SUMO ligase SIZ1(SAP AND MIZ1 DOMAINCONTAINING LIGASE1) interacts with NF-YC10and enhances its SUMOylation during HS. The SUMOylation of NF-YC10 facilitates its interaction with and the nuclear translocation of NF-YB3, in which the SUMO interaction motif(SIM)is essential for its efficient association with NF-YC10. Further functional analysis indicated that the SUMOylation of NF-YC10 and the SIM of NF-YB3 are critical for HS-responsive gene expression and plant thermotolerance. These findings uncover a role for the SIZ1-mediated SUMOylation of NF-YC10 in NF-Y complex assembly under HS, providing new insights into the role of a post-translational modification in regulating transcription during abiotic stress responses in plants.展开更多
基金supported by the Major Program of Guangdong Basic and Applied Research (2019B030302006)the National Natural Science Foundation of China (31871222 and 31970531)+4 种基金the Natural Science Foundation of Guangdong (2018B030 308002, 2019A1515110330, 2021A1515011151)Guangdong Modern Agro-industry Technology Research System (2021KJ114)South China Normal University Young Teachers' Research Incubation Fund Project (21KJ18)the Program for Changjiang Scholarsthe Guangdong Special Support Program of Young Top-Notch Talent in Science and Technology Innovation (2019TQ05N651)。
文摘Heat stress(HS) has serious negative effects on plant development and has become a major threat to agriculture. A rapid transcriptional regulatory cascade has evolved in plants in response to HS. Nuclear Factor-Y(NF-Y) complexes are critical for this mechanism, but how NF-Y complexes are regulated remains unclear.In this study, we identified NF-YC10(NF-Y subunit C10), a central regulator of the HS response in Arabidopsis thaliana, as a substrate of SUMOylation, an important post-translational modification. Biochemical analysis showed that the SUMO ligase SIZ1(SAP AND MIZ1 DOMAINCONTAINING LIGASE1) interacts with NF-YC10and enhances its SUMOylation during HS. The SUMOylation of NF-YC10 facilitates its interaction with and the nuclear translocation of NF-YB3, in which the SUMO interaction motif(SIM)is essential for its efficient association with NF-YC10. Further functional analysis indicated that the SUMOylation of NF-YC10 and the SIM of NF-YB3 are critical for HS-responsive gene expression and plant thermotolerance. These findings uncover a role for the SIZ1-mediated SUMOylation of NF-YC10 in NF-Y complex assembly under HS, providing new insights into the role of a post-translational modification in regulating transcription during abiotic stress responses in plants.