In this paper, a method of power quality disturbance classification based on random matrix theory (RMT) is proposed. The method utilizes the power quality disturbance signal to construct a random matrix. By analyzing ...In this paper, a method of power quality disturbance classification based on random matrix theory (RMT) is proposed. The method utilizes the power quality disturbance signal to construct a random matrix. By analyzing the mean spectral radius (MSR) variation of the random matrix, the type and time of occurrence of power quality disturbance are classified. In this paper, the random matrix theory is used to analyze the voltage sag, swell and interrupt perturbation signals to classify the occurrence time, duration of the disturbance signal and thedepth of voltage sag or swell. Examples show that the method has strong anti-noise ability.展开更多
The structure and magnetic properties of Fe76.5Si13.5B9Cu1 alloys with a nanocrystalline (NC) bcc Fe(Si) phase trom about 23 to 46 nm in diameter, which were first formed into amorphous ribbons and then annealed at va...The structure and magnetic properties of Fe76.5Si13.5B9Cu1 alloys with a nanocrystalline (NC) bcc Fe(Si) phase trom about 23 to 46 nm in diameter, which were first formed into amorphous ribbons and then annealed at various temperatures between 703 and 773 K, have been investigated. At annealing temperatures from 703 to 748 K, the single NC bcc(Si) phase is obtained in the crystallized alloys. The grain size and the Si-content in the NC bcc Fe(Si) phase for the alloys annealed at different temperatures are presented. The soft magnetic properties and the saturation magnetostriction for the alloys with the NC bcc Fe(Si) phase are also measured. The results show that, the saturation magnetizotion and the permeability are improved for the alloys with only the NC bcc Fe(Si) phase and become better with decreasing of the NC bcc phase size, and the saturation magnetostriction declines for the alloys with increasing Si-content in the NC bcc Fe(Si) phase.展开更多
文摘In this paper, a method of power quality disturbance classification based on random matrix theory (RMT) is proposed. The method utilizes the power quality disturbance signal to construct a random matrix. By analyzing the mean spectral radius (MSR) variation of the random matrix, the type and time of occurrence of power quality disturbance are classified. In this paper, the random matrix theory is used to analyze the voltage sag, swell and interrupt perturbation signals to classify the occurrence time, duration of the disturbance signal and thedepth of voltage sag or swell. Examples show that the method has strong anti-noise ability.
文摘The structure and magnetic properties of Fe76.5Si13.5B9Cu1 alloys with a nanocrystalline (NC) bcc Fe(Si) phase trom about 23 to 46 nm in diameter, which were first formed into amorphous ribbons and then annealed at various temperatures between 703 and 773 K, have been investigated. At annealing temperatures from 703 to 748 K, the single NC bcc(Si) phase is obtained in the crystallized alloys. The grain size and the Si-content in the NC bcc Fe(Si) phase for the alloys annealed at different temperatures are presented. The soft magnetic properties and the saturation magnetostriction for the alloys with the NC bcc Fe(Si) phase are also measured. The results show that, the saturation magnetizotion and the permeability are improved for the alloys with only the NC bcc Fe(Si) phase and become better with decreasing of the NC bcc phase size, and the saturation magnetostriction declines for the alloys with increasing Si-content in the NC bcc Fe(Si) phase.