a-Crystallin is the major structural protein of eye lens of vertebrates. In human lens, the ratio of aA-crystallin to aB-crystallin was found to be 3:1. aA-Crystallin contains two cysteine residues at positions 131 an...a-Crystallin is the major structural protein of eye lens of vertebrates. In human lens, the ratio of aA-crystallin to aB-crystallin was found to be 3:1. aA-Crystallin contains two cysteine residues at positions 131 and 142, which are at the junction between the a-crystallin domain and the C-terminal tail. We used the accessibility of the thiol groups by Ellman’s reagent (DTNB) as a tool to gain information about the various structural perturbations of hinge region of a-crystallin and during the binding with substrates. In the native condition, the cys-142 though reacted quite fast was not fully exposed. Several reagents were used to see the accessibility of cys-131. Rate constant for cys-131 was increased gradually with increase in the concentration of reagents. The bindings of substrates are affected by the accessibility of thiol indicating that the substrates bind to the hinge region of a-crystallin. By blocking of cys-142, it was observed that the accessibility of one thiol depends on the other thiol, and they are not independent. The hinge region of a-crystallin is very important as substrate binding site and from this study we have got various structural information about that region.展开更多
文摘a-Crystallin is the major structural protein of eye lens of vertebrates. In human lens, the ratio of aA-crystallin to aB-crystallin was found to be 3:1. aA-Crystallin contains two cysteine residues at positions 131 and 142, which are at the junction between the a-crystallin domain and the C-terminal tail. We used the accessibility of the thiol groups by Ellman’s reagent (DTNB) as a tool to gain information about the various structural perturbations of hinge region of a-crystallin and during the binding with substrates. In the native condition, the cys-142 though reacted quite fast was not fully exposed. Several reagents were used to see the accessibility of cys-131. Rate constant for cys-131 was increased gradually with increase in the concentration of reagents. The bindings of substrates are affected by the accessibility of thiol indicating that the substrates bind to the hinge region of a-crystallin. By blocking of cys-142, it was observed that the accessibility of one thiol depends on the other thiol, and they are not independent. The hinge region of a-crystallin is very important as substrate binding site and from this study we have got various structural information about that region.