This paper studies the joint tail behavior of two randomly weighted sums∑_(i=1)^(m)Θ_(i)X_(i)and∑_(j=1)^(n)θ_(j)Y_(j)for some m,n∈N∪{∞},in which the primary random variables{X_(i);i∈N}and{Y_(i);i∈N},respectiv...This paper studies the joint tail behavior of two randomly weighted sums∑_(i=1)^(m)Θ_(i)X_(i)and∑_(j=1)^(n)θ_(j)Y_(j)for some m,n∈N∪{∞},in which the primary random variables{X_(i);i∈N}and{Y_(i);i∈N},respectively,are real-valued,dependent and heavy-tailed,while the random weights{Θi,θi;i∈N}are nonnegative and arbitrarily dependent,but the three sequences{X_(i);i∈N},{Y_(i);i∈N}and{Θ_(i),θ_(i);i∈N}are mutually independent.Under two types of weak dependence assumptions on the heavy-tailed primary random variables and some mild moment conditions on the random weights,we establish some(uniformly)asymptotic formulas for the joint tail probability of the two randomly weighted sums,expressing the insensitivity with respect to the underlying weak dependence structures.As applications,we consider both discrete-time and continuous-time insurance risk models,and obtain some asymptotic results for ruin probabilities.展开更多
This paper considers the optimal investment and premium control problem in a diffusion approxi- mation to a non-homogeneous compound Poisson process. In the nonlinear diffusion model, it is assumed that there is an un...This paper considers the optimal investment and premium control problem in a diffusion approxi- mation to a non-homogeneous compound Poisson process. In the nonlinear diffusion model, it is assumed that there is an unspecified monotone function describing the relationship between the safety loading of premium and the time-varying claim arrival rate. Hence, in addition to the investment control, the premium rate can be served as a control variable in the optimization problem. Specifically, the problem is investigated in two cases: (i) maximizing the expected utility of terminal wealth, and (ii) minimizing the probability of ruin respectively. In both cases, some properties of the value functions are derived, and closed-form expressions for the optimal policies and the value functions are obtained. The results show that the optimal investment policy and the optimal premium control policy are dependent on each other. Most interestingly, as an example, we show that the nonlinear diffusion model reduces to a diffusion model with a quadratic drift coefficient when the function associated with the premium rate and the claim arrival rate takes a special form. This example shows that the model of study represents a class of nonlinear stochastic control risk model.展开更多
Consider the optimal dividend problem for an insurance company whose uncontrolled surplus precess evolves as a spectrally negative Levy process. We assume that dividends are paid to the shareholders according to admis...Consider the optimal dividend problem for an insurance company whose uncontrolled surplus precess evolves as a spectrally negative Levy process. We assume that dividends are paid to the shareholders according to admissible strategies whose dividend rate is bounded by a constant. The objective is to find a dividend policy so as to maximize the expected discounted value of dividends which are paid to the shareholders until the company is ruined. In this paper, we show that a threshold strategy (also called refraction strategy) forms an optimal strategy under the condition that the Levy measure has a completely monotone density.展开更多
Abstract Let X1, X2,... be a sequence of dependent and heavy-tailed random variables with distributions F1, F2,.. on (-∞,∞), and let T be a nonnegative integer-valued random variable independent of the sequence {X...Abstract Let X1, X2,... be a sequence of dependent and heavy-tailed random variables with distributions F1, F2,.. on (-∞,∞), and let T be a nonnegative integer-valued random variable independent of the sequence {Xk, k 〉 1}. In this framework, the asymptotic behavior of the tail probabilities of the quantities Sn = fi Xk and S(n) =∑ k=1 n 〉 1, and their randomized versions ST and S(τ) are studied. Some risk theory are presented. max Sk for 1〈k〈n applications to the展开更多
In this paper,we consider a non-standard renewal risk model with dependent claim sizes,where an insurance company is allowed to invest his/her wealth in financial assets,leading to some stochastic investment log-retur...In this paper,we consider a non-standard renewal risk model with dependent claim sizes,where an insurance company is allowed to invest his/her wealth in financial assets,leading to some stochastic investment log-returns described as a general adapted càdlàg process.Under the assumptions that the claim sizes are heavy-tailed and the stochastic log-return process on investments is bounded from below almost surely,we derive some asymptotic formulas for the finite-time ruin probability holding uniformly in any finite time horizon.展开更多
We study the counterparty risk for a credit default swap (CDS) in a regime-switching market driven by an underlying continuous-time Markov chain. We model the default dependence via some correlated Cox processes wit...We study the counterparty risk for a credit default swap (CDS) in a regime-switching market driven by an underlying continuous-time Markov chain. We model the default dependence via some correlated Cox processes with regime-switching shot noise intensities containing common shock. Under the proposed model, the general bilateral counterparty risk pricing formula for CDS contracts with the possibility of joint defaults is presented. Based on some expressions for the conditional Laplace transform of the integrated intensity processes, semi-analytical solution for the bilateral credit valuation adjustment (CVA) is derived. When the model parameters satisfy some conditions, explicit formula for the bilateral CVA at time 0 is also given.展开更多
基金supported by the Humanities and Social Sciences Foundation of the Ministry of Education of China(Grant No.20YJA910006)Natural Science Foundation of Jiangsu Province of China(Grant No.BK20201396)+2 种基金supported by the Postgraduate Research and Practice Innovation Program of Jiangsu Province of China(Grant No.KYCX211939)supported by the Research Grants Council of Hong KongChina(Grant No.HKU17329216)。
文摘This paper studies the joint tail behavior of two randomly weighted sums∑_(i=1)^(m)Θ_(i)X_(i)and∑_(j=1)^(n)θ_(j)Y_(j)for some m,n∈N∪{∞},in which the primary random variables{X_(i);i∈N}and{Y_(i);i∈N},respectively,are real-valued,dependent and heavy-tailed,while the random weights{Θi,θi;i∈N}are nonnegative and arbitrarily dependent,but the three sequences{X_(i);i∈N},{Y_(i);i∈N}and{Θ_(i),θ_(i);i∈N}are mutually independent.Under two types of weak dependence assumptions on the heavy-tailed primary random variables and some mild moment conditions on the random weights,we establish some(uniformly)asymptotic formulas for the joint tail probability of the two randomly weighted sums,expressing the insensitivity with respect to the underlying weak dependence structures.As applications,we consider both discrete-time and continuous-time insurance risk models,and obtain some asymptotic results for ruin probabilities.
基金supported by the National Natural Science Foundation of China(11571388)the MOE Project of Key Research Institute of Humanities and Social Sciences at Universities(15JJD790036)+2 种基金the 111 Project(B17050)supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.HKU17329216)supported by the National Natural Science Foundation of China(11571198,11701319)
文摘This paper considers the optimal investment and premium control problem in a diffusion approxi- mation to a non-homogeneous compound Poisson process. In the nonlinear diffusion model, it is assumed that there is an unspecified monotone function describing the relationship between the safety loading of premium and the time-varying claim arrival rate. Hence, in addition to the investment control, the premium rate can be served as a control variable in the optimization problem. Specifically, the problem is investigated in two cases: (i) maximizing the expected utility of terminal wealth, and (ii) minimizing the probability of ruin respectively. In both cases, some properties of the value functions are derived, and closed-form expressions for the optimal policies and the value functions are obtained. The results show that the optimal investment policy and the optimal premium control policy are dependent on each other. Most interestingly, as an example, we show that the nonlinear diffusion model reduces to a diffusion model with a quadratic drift coefficient when the function associated with the premium rate and the claim arrival rate takes a special form. This example shows that the model of study represents a class of nonlinear stochastic control risk model.
基金Supported by the National Natural Science Foundation of China(No.10771119,No.11171179)the Research Fund for the Doctoral Program of Higher Education of China(No.20093705110002)The research of Kam C.Yuen was supported by a university research grant of the University of Hong Kong
文摘Consider the optimal dividend problem for an insurance company whose uncontrolled surplus precess evolves as a spectrally negative Levy process. We assume that dividends are paid to the shareholders according to admissible strategies whose dividend rate is bounded by a constant. The objective is to find a dividend policy so as to maximize the expected discounted value of dividends which are paid to the shareholders until the company is ruined. In this paper, we show that a threshold strategy (also called refraction strategy) forms an optimal strategy under the condition that the Levy measure has a completely monotone density.
基金supported by the National Natural Science Foundation of China (No. 11171179)the Research Fund for the Doctoral Program of Higher Education of China (No. 20093705110002)
文摘Abstract Let X1, X2,... be a sequence of dependent and heavy-tailed random variables with distributions F1, F2,.. on (-∞,∞), and let T be a nonnegative integer-valued random variable independent of the sequence {Xk, k 〉 1}. In this framework, the asymptotic behavior of the tail probabilities of the quantities Sn = fi Xk and S(n) =∑ k=1 n 〉 1, and their randomized versions ST and S(τ) are studied. Some risk theory are presented. max Sk for 1〈k〈n applications to the
基金his paper is supported by the Humanities and Social Sciences Foundation of the Ministry of Education of China(No.20YJA910006)Natural Science Foundation of Jiangsu Province(No.BK20201396)+2 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions(No.19KJA180003)the Grant from the Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.HKU17329216)the CAE 2013 Research Grant from the Society of Actuaries.
文摘In this paper,we consider a non-standard renewal risk model with dependent claim sizes,where an insurance company is allowed to invest his/her wealth in financial assets,leading to some stochastic investment log-returns described as a general adapted càdlàg process.Under the assumptions that the claim sizes are heavy-tailed and the stochastic log-return process on investments is bounded from below almost surely,we derive some asymptotic formulas for the finite-time ruin probability holding uniformly in any finite time horizon.
基金The authors thank the anonymous referees for valuable comments to improve the earlier version of the paper. The research of Yinghui Dong was supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20170064) and QingLan project. The research of Kam Chuen Yuen was supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. HKU17329216), and the CAE 2013 research grant from the Society of Actuaries-any opinions, finding, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SOA. The research of Guojing Wang was supported by the National Natural Science Foundation of China (Grant No. 11371274).
文摘We study the counterparty risk for a credit default swap (CDS) in a regime-switching market driven by an underlying continuous-time Markov chain. We model the default dependence via some correlated Cox processes with regime-switching shot noise intensities containing common shock. Under the proposed model, the general bilateral counterparty risk pricing formula for CDS contracts with the possibility of joint defaults is presented. Based on some expressions for the conditional Laplace transform of the integrated intensity processes, semi-analytical solution for the bilateral credit valuation adjustment (CVA) is derived. When the model parameters satisfy some conditions, explicit formula for the bilateral CVA at time 0 is also given.