期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Global pattern and change of cropland soil organic carbon during 1901-2010: Roles of climate, atmospheric chemistry, land use and management 被引量:7
1
作者 Wei Ren kamaljit banger +3 位作者 Bo Tao Jia Yang Yawen Huang Hanqin Tian 《Geography and Sustainability》 2020年第1期59-69,共11页
Soil organic carbon(SOC)in croplands is a key property of soil quality for ensuring food security and agricultural sustainability,and also plays a central role in the global carbon(C)budget.When managed sustainably,so... Soil organic carbon(SOC)in croplands is a key property of soil quality for ensuring food security and agricultural sustainability,and also plays a central role in the global carbon(C)budget.When managed sustainably,soils may play a critical role in mitigating climate change by sequestering C and decreasing greenhouse gas emissions into the atmosphere.However,the magnitude and spatio-temporal patterns of global cropland SOC are far from well constrained due to high land surface heterogeneity,complicated mechanisms,and multiple influencing factors.Here,we use a process-based agroecosystem model(DLEM-Ag)in combination with diverse spatially-explicit gridded environmental data to quantify the long-term trend of SOC storage in global cropland area during 1901-2010 and identify the relative impacts of climate change,elevated CO2,nitrogen deposition,land cover change,and land management practices such as nitrogen fertilizer use and irrigation.Model results show that the total SOC and SOC density in the 2000s increased by 125%and 48.8%,respectively,compared to the early 20th century.This SOC increase was primarily attributed to cropland expansion and nitrogen fertilizer use.Factorial analysis suggests that climate change reduced approximately 3.2%(or 2,166 Tg C)of the total SOC over the past 110 years.Our results indicate that croplands have a large potential to sequester C through implementing better land use management practices,which may partially offset SOC loss caused by climate change. 展开更多
关键词 Global cropland Soil organic carbon Climate change Land management Process-based modeling
下载PDF
Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes 被引量:7
2
作者 Hanqin Tian Guangsheng Chen +10 位作者 Chaoqun Lu Xiaofeng Xu Wei Ren Bowen Zhang kamaljit banger Bo Tao Shufen Pan Mingliang Liu Chi Zhang Lori Bruhwiler Steven Wofsy 《Ecosystem Health and Sustainability》 SCIE 2015年第1期23-43,共21页
Greenhouse gas(GHG)-induced climate change is among the most pressing sustainability challenges facing humanity today,posing serious risks for ecosystem health.Methane(CH_(4))and nitrous oxide(N_(2)O)are the two most ... Greenhouse gas(GHG)-induced climate change is among the most pressing sustainability challenges facing humanity today,posing serious risks for ecosystem health.Methane(CH_(4))and nitrous oxide(N_(2)O)are the two most important GHGs after carbon dioxide(CO_(2)),but their regional and global budgets are not well known.In this study,we applied a process-based coupled biogeochemical model to concurrently estimate the magnitude and spatial and temporal patterns of CH_(4)and N_(2)O fluxes as driven by multiple environmental changes,including climate variability,rising atmospheric CO_(2),increasing nitrogen deposition,tropospheric ozone pollution,land use change,and nitrogen fertilizer use.The estimated CH_(4)and N_(2)O emissions from global land ecosystems during 1981-2010 were 144.39±12.90 Tg C/yr(mean 62 SE;1 Tg=1012 g)and 12.52±0.74 Tg N/yr,respectively.Our simulations indicated a significant(P,0.01)annually increasing trend for CH_(4)(0.43±0.06 Tg C/yr)and N_(2)O(0.14±0.02 Tg N/yr)in the study period.CH_(4)and N_(2)O emissions increased significantly in most climatic zones and continents,especially in the tropical regions and Asia.The most rapid increase in CH_(4)emission was found in natural wetlands and rice fields due to increased rice cultivation area and climate warming.N_(2)O emission increased substantially in all the biome types and the largest increase occurred in upland crops due to increasing air temperature and nitrogen fertilizer use.Clearly,the three major GHGs(CH_(4),N_(2)O,and CO_(2))should be simultaneously considered when evaluating if a policy is effective to mitigate climate change. 展开更多
关键词 coupled biogeochemical cycles global warming potential greenhouse gas METHANE nitrous oxide terrestrial ecosystem
原文传递
Responses of global terrestrial water use efficiency to climate change and rising atmospheric CO_(2)concentration in the twenty-first century 被引量:1
3
作者 Shufen Pan Guangsheng Chen +5 位作者 Wei Ren Shree R.S.Dangal kamaljit banger Jia Yang Bo Tao Hanqin Tian 《International Journal of Digital Earth》 SCIE EI 2018年第6期558-582,共25页
Terrestrial ecosystems play a significant role in global carbon and water cycles because of the substantial amount of carbon assimilated through net primary production and large amount of water loss through evapotrans... Terrestrial ecosystems play a significant role in global carbon and water cycles because of the substantial amount of carbon assimilated through net primary production and large amount of water loss through evapotranspiration(ET).Using a process-based ecosystem model,we investigate the potential effects of climate change and rising atmospheric CO_(2)concentration on global terrestrial ecosystem water use efficiency(WUE)during the twenty-first century.Future climate change would reduce global WUE by 16.3%under high-emission climate change scenario(A2)and 2.2%under low-emission climate scenario(B1)during 2010–2099.However,the combination of rising atmospheric CO_(2)concentration and climate change would increase global WUE by 7.9%and 9.4%under A2 and B1 climate scenarios,respectively.This suggests that rising atmospheric CO_(2)concentration could ameliorate climate change-induced WUE decline.Future WUE would increase significantly at the high-latitude regions but decrease at the low-latitude regions under combined changes in climate and atmospheric CO_(2).The largest increase of WUE would occur in tundra and boreal needleleaf deciduous forest under the combined A2 climate and atmospheric CO_(2)scenario.More accurate prediction of WUE requires deeper understanding on the responses of ET to rising atmospheric CO_(2)concentrations and its interactions with climate. 展开更多
关键词 Climate change EVAPOTRANSPIRATION net primary productivity water use efficiency
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部