Peculiar xerogels and aerogels constituted by a silica network, made of spherical fully dense silica particles having the same size, are investigated by adsorption of nitrogen at 77.4 K. Comparison of sorption data be...Peculiar xerogels and aerogels constituted by a silica network, made of spherical fully dense silica particles having the same size, are investigated by adsorption of nitrogen at 77.4 K. Comparison of sorption data between materials dried via different methods, gentle drying at room temperature, alcohol supercritical drying and CO2 supercritical drying, shows that the specific surface area is associated to the particle sizes and necks established between them during drying and not to the sample density. The dissolution-redeposition of silica, which occurs in the alcohol supercritical drying process, induces a decrease of specific surface area and consequently an increase in the mechanical properties comparatively to CO2 supercritical drying. Investigating pore volume measurements as a function of dwell time, which is the interval of time allowing a pressure change of 0.01%, we corroborate that for compliant materials the full volume can not be detected because of capillary stresses. So the time required to perform correct measurements of the pore volume decreases with sample bulk density increase and elastic properties increase. All these experiments qualitatively corroborate the theory proposed previously.展开更多
文摘Peculiar xerogels and aerogels constituted by a silica network, made of spherical fully dense silica particles having the same size, are investigated by adsorption of nitrogen at 77.4 K. Comparison of sorption data between materials dried via different methods, gentle drying at room temperature, alcohol supercritical drying and CO2 supercritical drying, shows that the specific surface area is associated to the particle sizes and necks established between them during drying and not to the sample density. The dissolution-redeposition of silica, which occurs in the alcohol supercritical drying process, induces a decrease of specific surface area and consequently an increase in the mechanical properties comparatively to CO2 supercritical drying. Investigating pore volume measurements as a function of dwell time, which is the interval of time allowing a pressure change of 0.01%, we corroborate that for compliant materials the full volume can not be detected because of capillary stresses. So the time required to perform correct measurements of the pore volume decreases with sample bulk density increase and elastic properties increase. All these experiments qualitatively corroborate the theory proposed previously.