An analytical solution in physical variable space is presented for transient gas flows during constant-rate production from a vertically-fractured well in an infinite homogeneous reservoir with finite fracture conduct...An analytical solution in physical variable space is presented for transient gas flows during constant-rate production from a vertically-fractured well in an infinite homogeneous reservoir with finite fracture conductivity.The solution is based on the short-time asymptotic solution and a new approximate transient elliptical flow solution,which covers transient flows from the bilinear flow regime to the pseudo-radial flow regime.The solution covers the well-known asymptotic solutions in both short-and long-time limits of bilinear and pseudo-radial flows.The analytical model provides a practical and reliable engineering tool to evaluate the fractured reservoir properties,which can be programmed using a spreadsheet.展开更多
基金supported by the Chinese National Natural Science Foundation Grant 52074314
文摘An analytical solution in physical variable space is presented for transient gas flows during constant-rate production from a vertically-fractured well in an infinite homogeneous reservoir with finite fracture conductivity.The solution is based on the short-time asymptotic solution and a new approximate transient elliptical flow solution,which covers transient flows from the bilinear flow regime to the pseudo-radial flow regime.The solution covers the well-known asymptotic solutions in both short-and long-time limits of bilinear and pseudo-radial flows.The analytical model provides a practical and reliable engineering tool to evaluate the fractured reservoir properties,which can be programmed using a spreadsheet.