期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Finite element modeling of macrosegregation coupled with shrinkage cavity in steel ingots using arbitrary Lagrangian-Eulerian model
1
作者 kang-xin chen Hao Shi Hou-fa Shen 《China Foundry》 SCIE 2019年第5期291-299,共9页
Shrinkage cavity has significant influence on macrosegregation in steel ingots. An arbitrary Lagrangian-Eulerian (ALE) model based on volume averaging method is developed to predict the coupled formation progress of m... Shrinkage cavity has significant influence on macrosegregation in steel ingots. An arbitrary Lagrangian-Eulerian (ALE) model based on volume averaging method is developed to predict the coupled formation progress of macrosegregation and shrinkage cavity during solidification of steel ingots. The combined effect of thermal-solutal convection and solidification shrinkage on macrosegregation is considered in the model. A specially designed mesh update algorithm is proposed to consider the formation of shrinkage cavity. The streamline-upwind/Petrov–Galerkin (SUPG) stabilized finite element algorithm is adopted to solve the conservation equations. Two solution methods for the energy conservation equation are proposed, i.e. the temperature-based solver and enthalpy-based solver. A Pb-48wt.%Sn solidification benchmark is used for validation. Then, the ALE model is applied to a Fe-3.6wt.%C industrial steel ingot. The formation progress of macrosegregation coupled with shrinkage cavity is predicted. By comparison with the predictions of the finite element model and finite volume model, the effect of shrinkage cavity formation on macrosegregation is investigated. Results show that the formation of shrinkage cavity can significantly change the segregation region and segregation degree at the hot top. It is demonstrated that the ALE model can predict the coupled formation of macrosegregation and shrinkage cavity in steel ingots. 展开更多
关键词 STEEL INGOT MACROSEGREGATION SHRINKAGE cavity ALE model finite element modeling
下载PDF
Numerical Simulation of Macrosegregation Caused by Thermal–Solutal Convection and Solidification Shrinkage Using ALE Model
2
作者 kang-xin chen Hou-Fa Shen 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第11期1396-1406,共11页
Solidifi cation shrinkage has been recognized as an important factor for macrosegregation formation. An arbitrary Lagrangian–Eulerian(ALE) model is constructed to predict the macrosegregation caused by thermal–solut... Solidifi cation shrinkage has been recognized as an important factor for macrosegregation formation. An arbitrary Lagrangian–Eulerian(ALE) model is constructed to predict the macrosegregation caused by thermal–solutal convection and solidi-fi cation shrinkage. A novel mesh update algorithm is developed to account for the domain change induced by solidifi cation shrinkage. The velocity–pressure coupling between the non-homogenous mass conservation equation and momentum equation is addressed by a modifi ed pressure correction method. The governing equations are solved by the streamline-upwind/Petrov–Galerkin-stabilized fi nite element algorithm. The application of the model to the Pb-19.2 wt%Sn alloy solidifi cation problem is considered. The inverse segregation is successfully predicted, and reasonable agreement with the literature results is obtained. Thus, the ALE model is established to be a highly effective tool for predicting the macrosegregation caused by solidifi cation shrinkage and thermal–solutal convection. Finally, the effect of solidifi cation shrinkage is analyzed. The results demonstrate that solidifi cation shrinkage delays the advance of the solidifi cation front and intensifi es the segregation. 展开更多
关键词 MACROSEGREGATION Solidification SHRINKAGE Finite element method Arbitrary Lagrangian–Eulerian(ALE)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部