SO_(2)and NO emitted from coal-fired power plants have caused serious air pollution in China.In this study,a test system for NO oxidation using O_(3)is established.The basic characteristics of NO oxidation and product...SO_(2)and NO emitted from coal-fired power plants have caused serious air pollution in China.In this study,a test system for NO oxidation using O_(3)is established.The basic characteristics of NO oxidation and products forms are studied.A separate test system for the combined removal of SO_(2)and NO_(x)is also established,and the absorption characteristics of NO_(x)are studied.The characteristics of NO oxidation and NO_(x)absorption were verified in a 35 t·h^(-1)industrial boiler wet combined desulfurization and denitrification project.The operating economy of ozone oxidation wet denitrification technology is analyzed.The results show that O_(3)has a high rate and strong selectivity for NO oxidation.When O_(3)is insufficient,the primary oxidation product is NO_(2).When O_(3)is present in excess,NO_(2)continues to get oxidized to N_(2)O_(5)or NO_(3).The removal efficiency of NO_(2)in alkaline absorption system is low(only about 15%).NOx removal efficiency can be improved by oxidizing NO_(x)to N_(2)O_(5)or NO_(3)by increasing ozone ratio.When the molar ratio of O_(3)/NO is 1.77,the NOx removal efficiency reaches 90.3%,while the operating cost of removing NO_(x)per kilogram is 6.06 USD(NO_(2)).展开更多
基金Huaneng Group Science and Technology Project(HNKJ17-H14)the Project of National Science and Technology Supporting Plan(2014BAA07B00)for their financial support。
文摘SO_(2)and NO emitted from coal-fired power plants have caused serious air pollution in China.In this study,a test system for NO oxidation using O_(3)is established.The basic characteristics of NO oxidation and products forms are studied.A separate test system for the combined removal of SO_(2)and NO_(x)is also established,and the absorption characteristics of NO_(x)are studied.The characteristics of NO oxidation and NO_(x)absorption were verified in a 35 t·h^(-1)industrial boiler wet combined desulfurization and denitrification project.The operating economy of ozone oxidation wet denitrification technology is analyzed.The results show that O_(3)has a high rate and strong selectivity for NO oxidation.When O_(3)is insufficient,the primary oxidation product is NO_(2).When O_(3)is present in excess,NO_(2)continues to get oxidized to N_(2)O_(5)or NO_(3).The removal efficiency of NO_(2)in alkaline absorption system is low(only about 15%).NOx removal efficiency can be improved by oxidizing NO_(x)to N_(2)O_(5)or NO_(3)by increasing ozone ratio.When the molar ratio of O_(3)/NO is 1.77,the NOx removal efficiency reaches 90.3%,while the operating cost of removing NO_(x)per kilogram is 6.06 USD(NO_(2)).