Tin sulfide quantum dots(SnS_2 QDs) are n-type wide band gap semiconductor. They exhibit a high optical absorption coefficient and strong photoconductive property in the ultraviolet and visible regions. Therefore, the...Tin sulfide quantum dots(SnS_2 QDs) are n-type wide band gap semiconductor. They exhibit a high optical absorption coefficient and strong photoconductive property in the ultraviolet and visible regions. Therefore, they have been found to have many potential applications, such as gas sensors, resistors, photodetectors, photocatalysts, and solar cells. However, the existing preparation methods for SnS_2 QDs are complicated and require a high temperature and high pressure environments; hence they are unsuitable for large-scale industrial production. An effective method for the preparation of monodispersed SnS_2 QDs at normal temperature and pressure will be discussed in this paper. The method is facile, green,and low-cost. In this work, the structure, morphology, optical, electrical, and photoelectric properties of SnS_2 QDs are studied. The synthesized SnS_2 QDs are homogeneous in size and exhibit good photoelectric performance. A photoelectric detector based on the SnS_2 QDs is fabricated and its J–V and C–V characteristics are also studied. The detector responds under λ = 365 nm light irradiation and reverse bias voltage. Its detectivity approximately stabilizes at 1011 Jones at room temperature. These results show the possible use of SnS_2 QDs in photodetectors.展开更多
Cadmium sulfide quantum dots(CdS QDs) are widely used in solar cells, light emitting diodes, photocatalysis, and biological imaging because of their unique optical and electrical properties. However, there are some dr...Cadmium sulfide quantum dots(CdS QDs) are widely used in solar cells, light emitting diodes, photocatalysis, and biological imaging because of their unique optical and electrical properties. However, there are some drawbacks in existing preparation techniques for CdS QDs, such as protection of inert gas, lengthy reaction time, high reaction temperature, poor crystallinity, and non-uniform particle size distribution. In this study, we prepared CdS QDs by liquid phase synthesis under ambient room temperature and atmospheric pressure using sodium alkyl sulfonate, CdCl_2, and Na_2S as capping agent, cadmium, and sulfur sources respectively. This technique offers facile preparation, efficient reaction, low-cost, and controllable particle size. The as-prepared CdS QDs exhibited good crystallinity, excellent monodispersity, and uniform particle size. The responsivity of CdS QDs-based photodetector is greater than 0.3 μA/W, which makes them suitable for use as ultra-violet(UV) detectors.展开更多
基金supported by the Equipment Pre-research Fund under the Equipment Development Department(EDD)of China’s Central Military Commission(CMC)(Grant No.1422030209)the Innovation Team Program of China North Industries Group Corporation Limited(NORINCO)Group(Grant No.2017CX024)the National Natural Science Foundation of China(Grant Nos.61106098 and 11864044)
文摘Tin sulfide quantum dots(SnS_2 QDs) are n-type wide band gap semiconductor. They exhibit a high optical absorption coefficient and strong photoconductive property in the ultraviolet and visible regions. Therefore, they have been found to have many potential applications, such as gas sensors, resistors, photodetectors, photocatalysts, and solar cells. However, the existing preparation methods for SnS_2 QDs are complicated and require a high temperature and high pressure environments; hence they are unsuitable for large-scale industrial production. An effective method for the preparation of monodispersed SnS_2 QDs at normal temperature and pressure will be discussed in this paper. The method is facile, green,and low-cost. In this work, the structure, morphology, optical, electrical, and photoelectric properties of SnS_2 QDs are studied. The synthesized SnS_2 QDs are homogeneous in size and exhibit good photoelectric performance. A photoelectric detector based on the SnS_2 QDs is fabricated and its J–V and C–V characteristics are also studied. The detector responds under λ = 365 nm light irradiation and reverse bias voltage. Its detectivity approximately stabilizes at 1011 Jones at room temperature. These results show the possible use of SnS_2 QDs in photodetectors.
基金Project supported by the Equipment Pre-research Fund under the Equipment Development Department(EDD)of China’s Central Military Commission(CMC)(Grant No.1422030209)the Innovation Team Program of NORINCO Group(Grant No.2017CX024)the National Natural Science Foundation of China(Grant Nos.61106098 and 11864044)
文摘Cadmium sulfide quantum dots(CdS QDs) are widely used in solar cells, light emitting diodes, photocatalysis, and biological imaging because of their unique optical and electrical properties. However, there are some drawbacks in existing preparation techniques for CdS QDs, such as protection of inert gas, lengthy reaction time, high reaction temperature, poor crystallinity, and non-uniform particle size distribution. In this study, we prepared CdS QDs by liquid phase synthesis under ambient room temperature and atmospheric pressure using sodium alkyl sulfonate, CdCl_2, and Na_2S as capping agent, cadmium, and sulfur sources respectively. This technique offers facile preparation, efficient reaction, low-cost, and controllable particle size. The as-prepared CdS QDs exhibited good crystallinity, excellent monodispersity, and uniform particle size. The responsivity of CdS QDs-based photodetector is greater than 0.3 μA/W, which makes them suitable for use as ultra-violet(UV) detectors.