Micropropagation of Psidium guajava L. (guava) is a viable alternative to currently adopted techniques for large-scale plant propagation of commercial cultivars. Assessment of clonal fidelity in micropropagated plants...Micropropagation of Psidium guajava L. (guava) is a viable alternative to currently adopted techniques for large-scale plant propagation of commercial cultivars. Assessment of clonal fidelity in micropropagated plants is the first step towards ensuring genetic uniformity in mass production of planting material. In the present study, 31 plants of guava cultivar “Lucknow 49” regenerated by micropropagation were tested for genetic fidelity by comparing them to the mother plant from which explant material was obtained. Efficient rooting of in vitro proliferated shoots was obtained by culture on 1/2 strength MS medium supplemented with either 9.8 μM indole butyric acid (IBA) or 11.4 μM indole acetic acid (IAA). Leaf samples of 31 regenerated plants were compared to the mother plant using 17 simple sequence repeat (SSR) markers. While 16 SSRs detected the same allele, locus mPgCIR07 detected slight differences, where six micropropagated plants were 1 bp smaller (152 bp) than the parental genotype (153 bp). Differences in leaf tissues for anthocyanin pigmentation were also noted among micropropagated plants. Results of the study indicated efficient rooting of “Lucknow-49” cultivar for rapid propagation of planting material, and revealed that micropropagated plants were identical for 16 of the 17 loci examined. Although most mutations induced by tissue culture may not have an effect on phenotype, the possibility that novel phenotypes can be generated in a commercial setting exists.展开更多
Cultivated peanut is grown worldwide as rich- source of oil and protein. A broad genetic base is needed for cultivar improvement. The objectives of this study were to develop highly informative simple sequence repeat ...Cultivated peanut is grown worldwide as rich- source of oil and protein. A broad genetic base is needed for cultivar improvement. The objectives of this study were to develop highly informative simple sequence repeat (SSR) markers and to assess the genetic diversity and popuJation structure of peanut cultivars and breeding lines from different breeding programs in China, India and the US. A total of 111 SSR markers were selected for this study, resulting in a total of 472 alleles. The mean values of gene diversity and polymorphic information content (PIC) were 0.480 and o.429, respectively. Country-wise analysis revealed that alleles per locus in three countries were similar. The mean gene diversity in the US, China and India was 0.363, o.489 and 0.47 with an average PIC of 0.323, 0.43 and o.412, respectively. Genetic analysis using the STRUCTURE divided these peanut lines into two populations (P1, P2), which was consistent with the dendro- gram based on genetic distance (G1, G2) and the clustering of principal component analysis. The groupings were related to peanut market types and the geographic origin with a few admixtures. The results could be used by breeding programs to assess the genetic diversity of breeding materials to broaden the genetic base and for molecular genetics studies.展开更多
文摘Micropropagation of Psidium guajava L. (guava) is a viable alternative to currently adopted techniques for large-scale plant propagation of commercial cultivars. Assessment of clonal fidelity in micropropagated plants is the first step towards ensuring genetic uniformity in mass production of planting material. In the present study, 31 plants of guava cultivar “Lucknow 49” regenerated by micropropagation were tested for genetic fidelity by comparing them to the mother plant from which explant material was obtained. Efficient rooting of in vitro proliferated shoots was obtained by culture on 1/2 strength MS medium supplemented with either 9.8 μM indole butyric acid (IBA) or 11.4 μM indole acetic acid (IAA). Leaf samples of 31 regenerated plants were compared to the mother plant using 17 simple sequence repeat (SSR) markers. While 16 SSRs detected the same allele, locus mPgCIR07 detected slight differences, where six micropropagated plants were 1 bp smaller (152 bp) than the parental genotype (153 bp). Differences in leaf tissues for anthocyanin pigmentation were also noted among micropropagated plants. Results of the study indicated efficient rooting of “Lucknow-49” cultivar for rapid propagation of planting material, and revealed that micropropagated plants were identical for 16 of the 17 loci examined. Although most mutations induced by tissue culture may not have an effect on phenotype, the possibility that novel phenotypes can be generated in a commercial setting exists.
基金supported by the US Department of Agriculture Agricultural Research Service(USDA-ARS)the Georgia Agricultural Commodity Commission for Peanuts+1 种基金Peanut Foundation and National Peanut Boardpart of the CGIAR Research Program on Grain Legumes and USAID University Linkage Grant
文摘Cultivated peanut is grown worldwide as rich- source of oil and protein. A broad genetic base is needed for cultivar improvement. The objectives of this study were to develop highly informative simple sequence repeat (SSR) markers and to assess the genetic diversity and popuJation structure of peanut cultivars and breeding lines from different breeding programs in China, India and the US. A total of 111 SSR markers were selected for this study, resulting in a total of 472 alleles. The mean values of gene diversity and polymorphic information content (PIC) were 0.480 and o.429, respectively. Country-wise analysis revealed that alleles per locus in three countries were similar. The mean gene diversity in the US, China and India was 0.363, o.489 and 0.47 with an average PIC of 0.323, 0.43 and o.412, respectively. Genetic analysis using the STRUCTURE divided these peanut lines into two populations (P1, P2), which was consistent with the dendro- gram based on genetic distance (G1, G2) and the clustering of principal component analysis. The groupings were related to peanut market types and the geographic origin with a few admixtures. The results could be used by breeding programs to assess the genetic diversity of breeding materials to broaden the genetic base and for molecular genetics studies.