The present work aims to investigate the recovery of light rare earth elements(LREEs) oxides from end-oflife NiMH batteries using a hydro metallurgical process followed by effective precipitation.The operational leach...The present work aims to investigate the recovery of light rare earth elements(LREEs) oxides from end-oflife NiMH batteries using a hydro metallurgical process followed by effective precipitation.The operational leaching parameters such as phosphoric acid concentration,temperature,and the solid-liquid ratio were first optimized by Box-Behnken design.The results reveal that under optimum conditions([H_(3)PO_(4)]=2 mol/L,T=80℃,and S/L=1:10 g/mL) the leaching efficiencies of Ni,Co reach 98.1% and99.3%.While La,Ce,and Nd elements remain in the leaching residue as(La,Ce,Nd)PO_(4) with yields of 98.2%,98.6%,and 99.6% for La,Ce,and Nd,respectively.Afterward,the(La,Ce,Nd)PO_(4) is leached with HCl acid,then the rare earth oxalate was precipitated using oxalic acid at a pH of 1.8 and then the product was calcined at 800℃ for 2 h in order to synthesize the(Nd,La,Ce)_(2)O_(3).The analysis using scanning electron microscopy(SEM) coupled with energy dispersive X-ray spectroscopy(EDX) confirms the homogeneity of(Nd,La,Ce)_(2)O_(3) particles that have two morphologies,i.e.,flower and sticks with a particle size between 3and 6 μm.The unit cell parameters of(Nd,La,Ce)_(2)O_(3) were calculated after Rietveld refinement of the XRD patterns,in the space group of Fm-3m are a=b=c=0.57921 nm and the volume equal to 0.194322 nm^(3).展开更多
文摘The present work aims to investigate the recovery of light rare earth elements(LREEs) oxides from end-oflife NiMH batteries using a hydro metallurgical process followed by effective precipitation.The operational leaching parameters such as phosphoric acid concentration,temperature,and the solid-liquid ratio were first optimized by Box-Behnken design.The results reveal that under optimum conditions([H_(3)PO_(4)]=2 mol/L,T=80℃,and S/L=1:10 g/mL) the leaching efficiencies of Ni,Co reach 98.1% and99.3%.While La,Ce,and Nd elements remain in the leaching residue as(La,Ce,Nd)PO_(4) with yields of 98.2%,98.6%,and 99.6% for La,Ce,and Nd,respectively.Afterward,the(La,Ce,Nd)PO_(4) is leached with HCl acid,then the rare earth oxalate was precipitated using oxalic acid at a pH of 1.8 and then the product was calcined at 800℃ for 2 h in order to synthesize the(Nd,La,Ce)_(2)O_(3).The analysis using scanning electron microscopy(SEM) coupled with energy dispersive X-ray spectroscopy(EDX) confirms the homogeneity of(Nd,La,Ce)_(2)O_(3) particles that have two morphologies,i.e.,flower and sticks with a particle size between 3and 6 μm.The unit cell parameters of(Nd,La,Ce)_(2)O_(3) were calculated after Rietveld refinement of the XRD patterns,in the space group of Fm-3m are a=b=c=0.57921 nm and the volume equal to 0.194322 nm^(3).