To study the local and systemic effects of arbuscular mycorrhizal fungal (AMF) colonization, Nicotiana attenuata plants impaired in their interactions with AMF due to silencing of a calcium- and calmodulin dependent...To study the local and systemic effects of arbuscular mycorrhizal fungal (AMF) colonization, Nicotiana attenuata plants impaired in their interactions with AMF due to silencing of a calcium- and calmodulin dependent protein kinase (inverted repreat (ir)CCaMK) were grown competitively in pairs with empty vector (EV) plants, with and without two different types of inoculum. When inoculated, EV plants strongly outperformed irCCaMK plants. Foliar transcript profiling revealed that AMF colonization significantly changed gene expression of P-starvation and -transporter genes in irCCaMK plants. The Phtl family phosphate transporter NaPT5 was not only specifically induced in roots after AMF colonization, but also in leaves of AMF-colonized irCCaMK plants, and in plants grown under low Pi conditions in the absence of AMF. The P-starvation signature of inoculated irCCaMK plants corresponded with increases in selected amino acids and phenolic compounds in leaves. We also found a strong AMF-induced increase in amino acids and phenolic metabolites in roots. Plants impaired in their interactions with AMF clearly have a fitness disadvantage when competing for limited soil nutrients with a fully functional isogenic line. The additional role of the AMF-induced Phtl family transporter NaPT5 in leaves under P-starvation conditions will require further experiments to fully resolve.展开更多
基金funded by the Max Planck Societyby Advanced Grant 293926 from the European Research Council to I.T.B.by a JSMC grant to J.W.and by the Collaborative Research Centre“Chemical Mediators in Complex Biosystems-ChemBioSys”(SFB 531 1127).
文摘To study the local and systemic effects of arbuscular mycorrhizal fungal (AMF) colonization, Nicotiana attenuata plants impaired in their interactions with AMF due to silencing of a calcium- and calmodulin dependent protein kinase (inverted repreat (ir)CCaMK) were grown competitively in pairs with empty vector (EV) plants, with and without two different types of inoculum. When inoculated, EV plants strongly outperformed irCCaMK plants. Foliar transcript profiling revealed that AMF colonization significantly changed gene expression of P-starvation and -transporter genes in irCCaMK plants. The Phtl family phosphate transporter NaPT5 was not only specifically induced in roots after AMF colonization, but also in leaves of AMF-colonized irCCaMK plants, and in plants grown under low Pi conditions in the absence of AMF. The P-starvation signature of inoculated irCCaMK plants corresponded with increases in selected amino acids and phenolic compounds in leaves. We also found a strong AMF-induced increase in amino acids and phenolic metabolites in roots. Plants impaired in their interactions with AMF clearly have a fitness disadvantage when competing for limited soil nutrients with a fully functional isogenic line. The additional role of the AMF-induced Phtl family transporter NaPT5 in leaves under P-starvation conditions will require further experiments to fully resolve.