Human life intimately depends on plants for food,biomaterials,health,energy,and a sustainable environment.Various plants have been genetically improved mostly through breeding,along with limited modification via genet...Human life intimately depends on plants for food,biomaterials,health,energy,and a sustainable environment.Various plants have been genetically improved mostly through breeding,along with limited modification via genetic engineering,yet they are still not able to meet the ever-increasing needs,in terms of both quantity and quality,resulting from the rapid increase in world population and expected standards of living.A step change that may address these challenges would be to expand the potential of plants using biosystems design approaches.This represents a shift in plant science research from relatively simple trial-and-error approaches to innovative strategies based on predictive models of biological systems.Plant biosystems design seeks to accelerate plant genetic improvement using genome editing and genetic circuit engineering or create novel plant systems through de novo synthesis of plant genomes.From this perspective,we present a comprehensive roadmap of plant biosystems design covering theories,principles,and technical methods,along with potential applications in basic and applied plant biology research.We highlight current challenges,future opportunities,and research priorities,along with a framework for international collaboration,towards rapid advancement of this emerging interdisciplinary area of research.Finally,we discuss the importance of social responsibility in utilizing plant biosystems design and suggest strategies for improving public perception,trust,and acceptance.展开更多
Global demand for food and bioenergy production has increased rapidly,while the area of arable land has been declining for decades due to damage caused by erosion,pollution,sea level rise,urban development,soil salini...Global demand for food and bioenergy production has increased rapidly,while the area of arable land has been declining for decades due to damage caused by erosion,pollution,sea level rise,urban development,soil salinization,and water scarcity driven by global climate change.In order to overcome this conflict,there is an urgent need to adapt conventional agriculture to water-limited and hotter conditions with plant crop systems that display higher water-use efficiency(WUE).Crassulacean acid metabolism(CAM)species have substantially higher WUE than species performing C3 or C4 photosynthesis.CAM plants are derived from C3 photosynthesis ancestors.However,it is extremely unlikely that the C3 or C4 crop plants would evolve rapidly into CAM photosynthesis without human intervention.Currently,there is growing interest in improving WUE through transferring CAM into C3 crops.However,engineering a major metabolic plant pathway,like CAM,is challenging and requires a comprehensive deep understanding of the enzymatic reactions and regulatory networks in both C3 and CAM photosynthesis,as well as overcoming physiometabolic limitations such as diurnal stomatal regulation.Recent advances in CAM evolutionary genomics research,genome editing,and synthetic biology have increased the likelihood of successful acceleration of C3-to-CAM progression.Here,we first summarize the systems biology-level understanding of the molecular processes in the CAM pathway.Then,we review the principles of CAM engineering in an evolutionary context.Lastly,we discuss the technical approaches to accelerate the C3-to-CAM transition in plants using synthetic biology toolboxes.展开更多
基金The writing of this manuscript was supported by the Center for Bioenergy Innovation,a U.S.Department of Energy(DOE)Bioenergy Research Center supported by the Biological and Environmental Research(BER)program,the Laboratory Directed Research and Development program of Oak Ridge National Laboratory,and the U.S.DOE BER Genomic Science Program,as part of the Secure Ecosystem Engineering and Design Scientific Focus Area and the Plant-Microbe Interfaces Scientific Focus AreaYY is supported by NSF Plant Genome Research Project Grant(1740874)and the USDA National Institute of Food and Agriculture and Hatch Appropriations under Project PEN04659 and Accession#1016432.HY is supported by Nonprofit Research Projects(CAFYBB2018ZY001-1)of Chinese Academy of Forestry+3 种基金CTT acknowledges the financial support from the NSF CAREER award(NSF#1553250)and the DOE BER Genomic Science Program(DE-SC0019412)PMS acknowledges support from the Joint BioEnergy Institute which is supported by the U.S.DOE Office of Science,BER program under Contract No.DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of EnergyDL acknowledges financial support through the National Science Foundation(NSF)under Award Number 1833402.AJM acknowledges financial support from the UK Biotechnology and Biological Sciences Research Council(grants BB/M006468/1 and BB/S015531/1)the Leverhulme Trust(grant RPG-2017-402).
文摘Human life intimately depends on plants for food,biomaterials,health,energy,and a sustainable environment.Various plants have been genetically improved mostly through breeding,along with limited modification via genetic engineering,yet they are still not able to meet the ever-increasing needs,in terms of both quantity and quality,resulting from the rapid increase in world population and expected standards of living.A step change that may address these challenges would be to expand the potential of plants using biosystems design approaches.This represents a shift in plant science research from relatively simple trial-and-error approaches to innovative strategies based on predictive models of biological systems.Plant biosystems design seeks to accelerate plant genetic improvement using genome editing and genetic circuit engineering or create novel plant systems through de novo synthesis of plant genomes.From this perspective,we present a comprehensive roadmap of plant biosystems design covering theories,principles,and technical methods,along with potential applications in basic and applied plant biology research.We highlight current challenges,future opportunities,and research priorities,along with a framework for international collaboration,towards rapid advancement of this emerging interdisciplinary area of research.Finally,we discuss the importance of social responsibility in utilizing plant biosystems design and suggest strategies for improving public perception,trust,and acceptance.
基金This work was supported by the Center for Bioenergy Innovation(CBI),a U.S.Department of Energy Bioenergy Research Center supported by the Office of Science Biological and Environmental Research(BER)The writing of this manuscript was also supported by the Department of Energy(Office of Science,Genomic Science Program)under award number DE-SC0008834+3 种基金SDL acknowledges support from the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2019R1I1A1A01061727)DL acknowledges financial support from the National Science Foundation(NSF)under Award Number 1833402KM acknowledges support from start-up funding provided by the University of California,DavisPMS acknowledges support from the Department of Energy(DE-AC02-05CH11231).
文摘Global demand for food and bioenergy production has increased rapidly,while the area of arable land has been declining for decades due to damage caused by erosion,pollution,sea level rise,urban development,soil salinization,and water scarcity driven by global climate change.In order to overcome this conflict,there is an urgent need to adapt conventional agriculture to water-limited and hotter conditions with plant crop systems that display higher water-use efficiency(WUE).Crassulacean acid metabolism(CAM)species have substantially higher WUE than species performing C3 or C4 photosynthesis.CAM plants are derived from C3 photosynthesis ancestors.However,it is extremely unlikely that the C3 or C4 crop plants would evolve rapidly into CAM photosynthesis without human intervention.Currently,there is growing interest in improving WUE through transferring CAM into C3 crops.However,engineering a major metabolic plant pathway,like CAM,is challenging and requires a comprehensive deep understanding of the enzymatic reactions and regulatory networks in both C3 and CAM photosynthesis,as well as overcoming physiometabolic limitations such as diurnal stomatal regulation.Recent advances in CAM evolutionary genomics research,genome editing,and synthetic biology have increased the likelihood of successful acceleration of C3-to-CAM progression.Here,we first summarize the systems biology-level understanding of the molecular processes in the CAM pathway.Then,we review the principles of CAM engineering in an evolutionary context.Lastly,we discuss the technical approaches to accelerate the C3-to-CAM transition in plants using synthetic biology toolboxes.