期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
MELex: The Construction of Malay-English Sentiment Lexicon
1
作者 Nurul Husna Mahadzir Mohd Faizal Omar +3 位作者 Mohd Nasrun Mohd Nawi Anas ASalameh kasmaruddin che hussin Abid Sohail 《Computers, Materials & Continua》 SCIE EI 2022年第4期1789-1805,共17页
Currently,the sentiment analysis research in the Malaysian context lacks in terms of the availability of the sentiment lexicon.Thus,this issue is addressed in this paper in order to enhance the accuracy of sentiment a... Currently,the sentiment analysis research in the Malaysian context lacks in terms of the availability of the sentiment lexicon.Thus,this issue is addressed in this paper in order to enhance the accuracy of sentiment analysis.In this study,a new lexicon for sentiment analysis is constructed.A detailed review of existing approaches has been conducted,and a new bilingual sentiment lexicon known as MELex(Malay-English Lexicon)has been generated.Constructing MELex involves three activities:seed words selection,polarity assignment,and synonym expansions.Our approach differs from previous works in that MELex can analyze text for the two most widely used languages in Malaysia,Malay,and English,with the accuracy achieved,is 90%.It is evaluated based on the experimentation and case study approaches where the affordable housing projects in Malaysia are selected as case projects.This finding has given an implication on the ability of MELex to analyze public sentiments in the Malaysian context.The novel aspects of this paper are two-fold.Firstly,it introduces the new technique in assigning the polarity score,and second,it improves the performance over the classification of mixed language content. 展开更多
关键词 Machine learning data sciences artificial intelligence opinion mining sentiment analysis sentiment lexicon lexicon-based bilingual lexicon
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部