Maximizing NO3 uptake during seedling development is important as it has a major influence on plant growth and yield. However, little is known about the processes leading to, and involved in, the initiation of root NO...Maximizing NO3 uptake during seedling development is important as it has a major influence on plant growth and yield. However, little is known about the processes leading to, and involved in, the initiation of root NO3 uptake capacity in developing seedlings. This study examines the physiological processes involved in root NO3 uptake and metabolism, to gain an understanding of how the NO3 uptake system responds to meet demand as maize seedlings transition from seed N use to external N capture. The concentrations of seedderived free amino acids within root and shoot tissues are initially high, but decrease rapidly until stabilizing eight days after imbibition (DAI). Similarly, shoot N% decreases, but does not stabilize until 12-13 DAI. Following the decrease in free amino acid concentrations, root NO3- uptake capacity increases until shoot N% stabilizes. The increase in root NO3 uptake capacity corresponds with a rapid rise in transcript levels of putative NO3 transporters, ZmNRT2.1 and ZmNRT2.2. The processes underlying the increase in root NO3- uptake capacity to meet N demand provide an insight into the processes controlling N uptake.展开更多
基金Victorian Node of Metabolomics Australia,which is funded through Bioplatforms Australia Pty Ltd,a National Collaborative Research Infrastructure Strategy,5.1 Biomolecular Platforms and informatics investment,and co-investment from the Victorian State Government and The University of Melbournesupported by the Australian Centre for Plant Functional Genomics,the Australian Research Council(LP130101055)Du Pont Pioneer and the Grains Research and Development Corporation(GRS10437)
文摘Maximizing NO3 uptake during seedling development is important as it has a major influence on plant growth and yield. However, little is known about the processes leading to, and involved in, the initiation of root NO3 uptake capacity in developing seedlings. This study examines the physiological processes involved in root NO3 uptake and metabolism, to gain an understanding of how the NO3 uptake system responds to meet demand as maize seedlings transition from seed N use to external N capture. The concentrations of seedderived free amino acids within root and shoot tissues are initially high, but decrease rapidly until stabilizing eight days after imbibition (DAI). Similarly, shoot N% decreases, but does not stabilize until 12-13 DAI. Following the decrease in free amino acid concentrations, root NO3- uptake capacity increases until shoot N% stabilizes. The increase in root NO3 uptake capacity corresponds with a rapid rise in transcript levels of putative NO3 transporters, ZmNRT2.1 and ZmNRT2.2. The processes underlying the increase in root NO3- uptake capacity to meet N demand provide an insight into the processes controlling N uptake.