Direct application of bio-oil from fast pyrolysis as a fuel has remained a challenge due to its undesirable attributes such as low heating value,high viscosity,high corrosiveness and storage instability.Solvent additi...Direct application of bio-oil from fast pyrolysis as a fuel has remained a challenge due to its undesirable attributes such as low heating value,high viscosity,high corrosiveness and storage instability.Solvent addition is a simple method for circumventing these disadvantages to allow further processing and storage.In this work,computer-aided molecular design tools were developed to design optimal solvents to upgrade bio-oil whilst having low environmental impact.Firstly,target solvent requirements were translated into measurable physical properties.As different property prediction models consist different levels of structural information,molecular signature descriptor was used as a common platform to formulate the design problem.Because of the differences in the required structural information of different property prediction models,signatures of different heights were needed in formulating the design problem.Due to the combinatorial nature of higher-order signatures,the complexity of a computer-aided molecular design problem increases with the height of signatures.Thus,a multi-stage framework was developed by developing consistency rules that restrict the number of higher-order signatures.Finally,phase stability analysis was conducted to evaluate the stability of the solvent-oil blend.As a result,optimal solvents that improve the solvent-oil blend properties while displaying low environmental impact were identified.展开更多
基金The authors would like to express sincere gratitude to Ministry of Higher Education Malaysia for the realization of this research project under the Grant FRGS/1/2019/TK02/UNIM/02/1However,only the authors are responsible for the opinion expressed in this paper and for any remaining errors.
文摘Direct application of bio-oil from fast pyrolysis as a fuel has remained a challenge due to its undesirable attributes such as low heating value,high viscosity,high corrosiveness and storage instability.Solvent addition is a simple method for circumventing these disadvantages to allow further processing and storage.In this work,computer-aided molecular design tools were developed to design optimal solvents to upgrade bio-oil whilst having low environmental impact.Firstly,target solvent requirements were translated into measurable physical properties.As different property prediction models consist different levels of structural information,molecular signature descriptor was used as a common platform to formulate the design problem.Because of the differences in the required structural information of different property prediction models,signatures of different heights were needed in formulating the design problem.Due to the combinatorial nature of higher-order signatures,the complexity of a computer-aided molecular design problem increases with the height of signatures.Thus,a multi-stage framework was developed by developing consistency rules that restrict the number of higher-order signatures.Finally,phase stability analysis was conducted to evaluate the stability of the solvent-oil blend.As a result,optimal solvents that improve the solvent-oil blend properties while displaying low environmental impact were identified.