期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Rapid transport of insulin to the brain following intranasal administration in rats 被引量:5
1
作者 Lir-Wan Fan kathleen carter +1 位作者 Abhay Bhatt Yi Pang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第6期1046-1051,共6页
We previously reported that intranasal insulin protects substantia nigra dopaminergic neurons against6-hydroxydopamine neurotoxicity in rats. This study aimed to assess insulin pharmacokinetics in the rat brain follow... We previously reported that intranasal insulin protects substantia nigra dopaminergic neurons against6-hydroxydopamine neurotoxicity in rats. This study aimed to assess insulin pharmacokinetics in the rat brain following intranasal application. Recombinant human insulin(rh-Ins) or phosphate buffer solution was administered to both nostrils of rats. Animals were sacrificed at 15 minutes, 1, 2, and 6 hours to determine insulin levels in different brain regions by an ultrasensitive, human-specific enzyme-linked immunosorbent assay kit. For fluorescence tracing study, rats were administered with intranasal florescence-tagged insulin(Alex546-Ins), and brains were fixed at 10 and 30 minutes to prepare sagittal sections.rh-Ins was detected in all brain regions examined except the cerebral cortex. The highest levels were detected in the brainstem, followed by the cerebellum, substantia nigra/ventral tegmental area, olfactory bulb,striatum, hippocampus, and thalamus/hypothalamus. Insulin levels reached a peak at 15 minutes and then declined gradually overtime, but remained significantly higher than baseline levels at 6 hours in most regions.Consistently, widespread Alex546-Ins-binding cells were detected in the brain at 10 and 30 minutes, with the olfactory bulb and brainstem showing the highest while the cerebral cortex showing lowest fluorescence signals. Double-immunostaining showed that Alex546-Ins-bindings were primarily co-localized with neuronal nuclei-positive neurons. In the subtantia nigra, phospho-Akt was found to be activated in a subset of Alex546-Ins and tyrosine hydroxylase double-labeled cells, suggesting activation of the Akt/PI3 K pathway in these dopaminergic neurons. Data from this study suggest that intranasal insulin could effectively reach deep brain structures including the nigrostriatal pathways, where it binds to dopaminergic neurons and activates intracellular cell survival signaling. This study was approved by the Institutional Animal Care Committee at the University of Mississippi Medical Center(protocol 1333 A) on June 29, 2015. 展开更多
关键词 dopaminergic neurons STRIATUM substantia nigra BRAINSTEM olfactory bulb GLIA TRIGEMINAL nerve pharmacokinetics axonal TRANSPORT PAKT
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部