Background: Cycling currently comprises only 1% of transport trips in the U.S. despite benefits for air pollution, traffic congestion, and improved public health. Methods: Building upon the Level of Traffic Stress (LT...Background: Cycling currently comprises only 1% of transport trips in the U.S. despite benefits for air pollution, traffic congestion, and improved public health. Methods: Building upon the Level of Traffic Stress (LTS) methodology, we assessed GPS trip data from utilitarian cyclists to understand route preferences and the level of low stress cycling connection between origins and destinations. GPS data were obtained from adult transport cyclists over multiple days. All bikeable road segments in the network were assigned an LTS score. The shortest paths between each origin and destination along bikeable roadways and along low stress (LTS 1 or 2) routes were calculated. Route trajectories were mapped to the LTS network, and the LTS and distances of observed, the shortest and low stress routes were compared. LTS maps and animations were developed to highlight where low stress connections were lacking. Results: There were 1038 unique cycling trips from 87 participants included in the analysis. An exclusively low stress route did not exist for 51% of trips. Low stress routes that were possible were, on average, 74% longer than the shortest possible path and 56% longer than the observed route. Observed routes were longer and lower stress than the shortest possible route. Conclusions: Results indicate that transport cyclists traveled beyond low stress residential areas and that low stress routes with acceptable detour distances were lacking. Cyclists appeared to weigh both route distance and quality and were willing to trade maximum directness for lower stress. GPS data provide additional information to support planning decisions to increase the impact of infrastructure investments on cycling mode share.展开更多
文摘Background: Cycling currently comprises only 1% of transport trips in the U.S. despite benefits for air pollution, traffic congestion, and improved public health. Methods: Building upon the Level of Traffic Stress (LTS) methodology, we assessed GPS trip data from utilitarian cyclists to understand route preferences and the level of low stress cycling connection between origins and destinations. GPS data were obtained from adult transport cyclists over multiple days. All bikeable road segments in the network were assigned an LTS score. The shortest paths between each origin and destination along bikeable roadways and along low stress (LTS 1 or 2) routes were calculated. Route trajectories were mapped to the LTS network, and the LTS and distances of observed, the shortest and low stress routes were compared. LTS maps and animations were developed to highlight where low stress connections were lacking. Results: There were 1038 unique cycling trips from 87 participants included in the analysis. An exclusively low stress route did not exist for 51% of trips. Low stress routes that were possible were, on average, 74% longer than the shortest possible path and 56% longer than the observed route. Observed routes were longer and lower stress than the shortest possible route. Conclusions: Results indicate that transport cyclists traveled beyond low stress residential areas and that low stress routes with acceptable detour distances were lacking. Cyclists appeared to weigh both route distance and quality and were willing to trade maximum directness for lower stress. GPS data provide additional information to support planning decisions to increase the impact of infrastructure investments on cycling mode share.