AIM: To investigate the impact of arachidonic acid (AA) and docosahexaenoic acid (DHA) and their combination on colon cancer cell growth. METHODS: The LS-174T colon cancer cell line was used to study the role of...AIM: To investigate the impact of arachidonic acid (AA) and docosahexaenoic acid (DHA) and their combination on colon cancer cell growth. METHODS: The LS-174T colon cancer cell line was used to study the role of the prostaglandin precursor AA and the omega-3 polyunsaturated fatty acid DHA on cell growth. Cell viability was assessed in XTT assays. For analysis of cell cycle and cell death, flow cytometry and DAPI staining were applied. Expression of cyclooxygenase-2 (COX-2), p21 and bcl-2 in ceils incubated with AA or DHA was examined by real-time RT-PCR. Prostaglandin E2 (PGE2) generation in the presence of AA and DHA was measured using a PGE2- ELISA. RESULTS: AA increased cell growth, whereas DHA reduced viability of LS 174T cells in a time- and dosedependent manner. Furthermore, DHA down- regulated mRNA of bcl-2 and up-regulated p21. Interestingly, DHA was able to suppress AA-induced cell proliferation and significantly lowered AA-derived PGE2 formation. DHA also down-regulated COX-2 expression. In addition to the effect on PGE2 formation, DHA directly reduced PGE2-induced cell proliferation in a dosedependent manner. CONCLUSION: These results suggest that DHA can inhibit the pro-proliferative effect of abundant AA or PGE2.展开更多
基金Supported by Grants from the German National Academic Foundation (to P.H.)from the American Cancer Society (RSG-03-140-01-CNE)+2 种基金the NIH (NIH R01 113605) (both to J.X.K.)the German Research Foundation (DFG)a Charité Research Grant (both to K.H.W.)
文摘AIM: To investigate the impact of arachidonic acid (AA) and docosahexaenoic acid (DHA) and their combination on colon cancer cell growth. METHODS: The LS-174T colon cancer cell line was used to study the role of the prostaglandin precursor AA and the omega-3 polyunsaturated fatty acid DHA on cell growth. Cell viability was assessed in XTT assays. For analysis of cell cycle and cell death, flow cytometry and DAPI staining were applied. Expression of cyclooxygenase-2 (COX-2), p21 and bcl-2 in ceils incubated with AA or DHA was examined by real-time RT-PCR. Prostaglandin E2 (PGE2) generation in the presence of AA and DHA was measured using a PGE2- ELISA. RESULTS: AA increased cell growth, whereas DHA reduced viability of LS 174T cells in a time- and dosedependent manner. Furthermore, DHA down- regulated mRNA of bcl-2 and up-regulated p21. Interestingly, DHA was able to suppress AA-induced cell proliferation and significantly lowered AA-derived PGE2 formation. DHA also down-regulated COX-2 expression. In addition to the effect on PGE2 formation, DHA directly reduced PGE2-induced cell proliferation in a dosedependent manner. CONCLUSION: These results suggest that DHA can inhibit the pro-proliferative effect of abundant AA or PGE2.