Fluoroalkyl end-capped acrylic acid oligomer [RF-(ACA)n-RF]/hexagonal boron nitride (h-BN) nanocomposites [RF-(ACA)n-RF/h-BN] were prepared by reaction of the corresponding oligomer with h-BN nanoparticles (mean diame...Fluoroalkyl end-capped acrylic acid oligomer [RF-(ACA)n-RF]/hexagonal boron nitride (h-BN) nanocomposites [RF-(ACA)n-RF/h-BN] were prepared by reaction of the corresponding oligomer with h-BN nanoparticles (mean diameter: 50 nm) under non-catalytic or alkaline conditions, respectively. Fluoroalkyl end-capped N,N-dimethylacrylamide oligomer/h-BN nanocomposites [RF-(DMAA)n-RF/h-BN] were also obtained under similar conditions. It was demonstrated that RF-(ACA)n-RF/h-BN nanocomposites, which were prepared under alkaline conditions, afforded a clear weight loss in proportion to the contents of the oligomer in the composites after calcination at 800°C;however, the non-catalytic conditions enabled the RF-(ACA)n-RF/h-BN nanocomposite to give no weight loss behavior corresponding to the contents of the oligomer even after calcination. In fact, it was demonstrated that the RF-(ACA)n-RF/h-BN nanocomposites possessing a clear weight loss property could afford the fluorescent peak around 370 nm related to h-BN in the composites;however, the same fluorescent intensity of this nanocomposite after calcination at 800°C as that of the original h-BN was observed, indicating that this nanocomposite could give a clear weigh loss behavior corresponding to the content of the oligomer during the calcination process. In contrast, the RF-(ACA)n-RF/h-BN nanocomposites possessing no weigh loss behavior were found to exhibit the similar fluorescent intensity before and even after calcination at 800°C, suggesting that the corresponding nanocomposites could provide no weight loss ability corresponding to the contents of the oligomer in the composites even after calcination. Similarly, RF-(DMAA)n-RF/h-BN nanocomposites, which were prepared under non-catalytic or alkaline conditions, were found to provide no weight loss corresponding to the contents of the oligomer even after calcination, respectively. These fluorinated h-BN nanocomposites were applied to the surface modification of PMMA [poly(methyl methacrylate)] to exhibit an oleophobic property on the modified PMMA surface. RF-(ACA)n-RF/h-BN nanocomposites possessing a clear weight loss behavior, whose composites were calcinated at 800°C, afforded not oleophobic but oleophilic property on the modified PMMA surface, quite similar to that of the pristine PMMA film surface;however, more interestingly, we found that RF-(ACA)n-RF/ and RF-(DMAA)n-RF/h-BN nanocomposites possessing no weight loss characteristic, whose composites were calcined at 800°C, could supply a good oleophobic property related to the fluoroalkyl segments in the composites on the modified PMMA surfaces, respectively.展开更多
Fluoroalkyl end-capped vinyltrimethoxysilane oligomer</span> </div> <span style="font-family:""> <div style="text-align:justify;"> <span style="font-family:&quo...Fluoroalkyl end-capped vinyltrimethoxysilane oligomer</span> </div> <span style="font-family:""> <div style="text-align:justify;"> <span style="font-family:""><span style="font-family:Verdana;">[R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(CH</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">-CHSi(OMe)</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">: </span><i><span style="font-family:Verdana;">n</span></i><span style="font-family:Verdana;"> = 2, 3, R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;"> = CF(CF</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">)OC</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">F</span><sub><span style="font-family:Verdana;">7</span></sub><span style="font-family:Verdana;">: R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">]</span></span><span style="font-family:Verdana;">,</span><span style="font-family:""><span style="font-family:Verdana;"> was applied to the facile preparation of the corresponding oligomer/sand (Ottawa </span><span style="font-family:Verdana;">sand: OS) composites [R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">/OS] through the sol-gel reaction </span><span style="font-family:Verdana;">of the oligomer in the presence of micro-sized OS particles (590 </span></span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;"> 840 μm) under alkaline conditions at room temperature. FE-SEM (Field Emission Scanning Electron Micrograph) images showed that the obtained composites consist of the R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;"> oligomeric nanoparticles and the micro-sized </span><span style="font-family:Verdana;">OS particles. Interestingly, the R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">/OS composites thus ob</span><span style="font-family:Verdana;">tained </span><span style="font-family:Verdana;">can provide the superoleophilic/superhydrophobic characteristic on the</span><span style="font-family:Verdana;"> composite surface, applying to the separation of not only the mixture of oil/water but also the W/O emulsion to isolate the transparent colorless oil. The fluorinated oligomeric OS composites were also found to be applicable to the selective removal of fluorinated aromatic compounds from </span></span><span style="font-family:Verdana;">an </span><span style="font-family:Verdana;">aqueous methanol solution. Especially, it was demonstrated that the fluorinated OS composites can supply a higher efficient and smooth separation ability for the separation of </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">mixture of oil and water than that of the corresponding fluorinated micro-sized controlled silica gel (μ-SiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">) composites (average particle size: 9.5 μm), which were prepared under similar conditions. In addition to the separation of oil/water, the fluorinated OS composites provided higher and </span></span><span style="font-family:Verdana;">more </span><span style="font-family:""><span style="font-family:Verdana;">selective removal ability for the fluorinated aromatic compounds from aqueous solutions than that of the μ-SiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> composites.展开更多
文摘Fluoroalkyl end-capped acrylic acid oligomer [RF-(ACA)n-RF]/hexagonal boron nitride (h-BN) nanocomposites [RF-(ACA)n-RF/h-BN] were prepared by reaction of the corresponding oligomer with h-BN nanoparticles (mean diameter: 50 nm) under non-catalytic or alkaline conditions, respectively. Fluoroalkyl end-capped N,N-dimethylacrylamide oligomer/h-BN nanocomposites [RF-(DMAA)n-RF/h-BN] were also obtained under similar conditions. It was demonstrated that RF-(ACA)n-RF/h-BN nanocomposites, which were prepared under alkaline conditions, afforded a clear weight loss in proportion to the contents of the oligomer in the composites after calcination at 800°C;however, the non-catalytic conditions enabled the RF-(ACA)n-RF/h-BN nanocomposite to give no weight loss behavior corresponding to the contents of the oligomer even after calcination. In fact, it was demonstrated that the RF-(ACA)n-RF/h-BN nanocomposites possessing a clear weight loss property could afford the fluorescent peak around 370 nm related to h-BN in the composites;however, the same fluorescent intensity of this nanocomposite after calcination at 800°C as that of the original h-BN was observed, indicating that this nanocomposite could give a clear weigh loss behavior corresponding to the content of the oligomer during the calcination process. In contrast, the RF-(ACA)n-RF/h-BN nanocomposites possessing no weigh loss behavior were found to exhibit the similar fluorescent intensity before and even after calcination at 800°C, suggesting that the corresponding nanocomposites could provide no weight loss ability corresponding to the contents of the oligomer in the composites even after calcination. Similarly, RF-(DMAA)n-RF/h-BN nanocomposites, which were prepared under non-catalytic or alkaline conditions, were found to provide no weight loss corresponding to the contents of the oligomer even after calcination, respectively. These fluorinated h-BN nanocomposites were applied to the surface modification of PMMA [poly(methyl methacrylate)] to exhibit an oleophobic property on the modified PMMA surface. RF-(ACA)n-RF/h-BN nanocomposites possessing a clear weight loss behavior, whose composites were calcinated at 800°C, afforded not oleophobic but oleophilic property on the modified PMMA surface, quite similar to that of the pristine PMMA film surface;however, more interestingly, we found that RF-(ACA)n-RF/ and RF-(DMAA)n-RF/h-BN nanocomposites possessing no weight loss characteristic, whose composites were calcined at 800°C, could supply a good oleophobic property related to the fluoroalkyl segments in the composites on the modified PMMA surfaces, respectively.
文摘Fluoroalkyl end-capped vinyltrimethoxysilane oligomer</span> </div> <span style="font-family:""> <div style="text-align:justify;"> <span style="font-family:""><span style="font-family:Verdana;">[R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(CH</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">-CHSi(OMe)</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">: </span><i><span style="font-family:Verdana;">n</span></i><span style="font-family:Verdana;"> = 2, 3, R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;"> = CF(CF</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">)OC</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">F</span><sub><span style="font-family:Verdana;">7</span></sub><span style="font-family:Verdana;">: R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">]</span></span><span style="font-family:Verdana;">,</span><span style="font-family:""><span style="font-family:Verdana;"> was applied to the facile preparation of the corresponding oligomer/sand (Ottawa </span><span style="font-family:Verdana;">sand: OS) composites [R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">/OS] through the sol-gel reaction </span><span style="font-family:Verdana;">of the oligomer in the presence of micro-sized OS particles (590 </span></span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;"> 840 μm) under alkaline conditions at room temperature. FE-SEM (Field Emission Scanning Electron Micrograph) images showed that the obtained composites consist of the R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;"> oligomeric nanoparticles and the micro-sized </span><span style="font-family:Verdana;">OS particles. Interestingly, the R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">-(VM-SiO</span><sub><span style="font-family:Verdana;">3/2</span></sub><span style="font-family:Verdana;">)</span><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;">-R</span><sub><span style="font-family:Verdana;">F</span></sub><span style="font-family:Verdana;">/OS composites thus ob</span><span style="font-family:Verdana;">tained </span><span style="font-family:Verdana;">can provide the superoleophilic/superhydrophobic characteristic on the</span><span style="font-family:Verdana;"> composite surface, applying to the separation of not only the mixture of oil/water but also the W/O emulsion to isolate the transparent colorless oil. The fluorinated oligomeric OS composites were also found to be applicable to the selective removal of fluorinated aromatic compounds from </span></span><span style="font-family:Verdana;">an </span><span style="font-family:Verdana;">aqueous methanol solution. Especially, it was demonstrated that the fluorinated OS composites can supply a higher efficient and smooth separation ability for the separation of </span><span style="font-family:Verdana;">the </span><span style="font-family:""><span style="font-family:Verdana;">mixture of oil and water than that of the corresponding fluorinated micro-sized controlled silica gel (μ-SiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">) composites (average particle size: 9.5 μm), which were prepared under similar conditions. In addition to the separation of oil/water, the fluorinated OS composites provided higher and </span></span><span style="font-family:Verdana;">more </span><span style="font-family:""><span style="font-family:Verdana;">selective removal ability for the fluorinated aromatic compounds from aqueous solutions than that of the μ-SiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> composites.