The periodontal ligament (PDL) contains oxytalan fibers as well as collagen fibers, which helps it to withstand the mechanical stress to which it is constantly exposed. The oxytalan fibers are produced by PDL fibrobla...The periodontal ligament (PDL) contains oxytalan fibers as well as collagen fibers, which helps it to withstand the mechanical stress to which it is constantly exposed. The oxytalan fibers are produced by PDL fibroblasts. However, the arrangement of PDL fibroblasts and the orientation of oxytalan fibers relative to the fibroblast cell axis have not been investigated under the condition of mechanical stress. We hypothesized that such stress would alter the arrangement and orientation of these cells and their oxytalan fibers. The aim of this study was to evaluate the effects of stretching strain on PDL fibroblasts, focusing on the cellular arrangement and orientation of oxytalan fibers relative to the long cell axis in cell/matrix layers by staining the major component of the fibers, fibrillin-1. The angle between the long cell axis and the oxytalan fibers was approximately 70 degrees under both non-stretching and stretching conditions. Moreover, stretching induced the rearrangement of the cells. This is the first study to demonstrate that stretching induces the rearrangement of the PDL fibroblasts without altering the angle between the long cell axis and the oxytalan fibers. These results may reflect the orientation of oxytalan fibers in the PDL under the condition of mechanical stress.展开更多
文摘The periodontal ligament (PDL) contains oxytalan fibers as well as collagen fibers, which helps it to withstand the mechanical stress to which it is constantly exposed. The oxytalan fibers are produced by PDL fibroblasts. However, the arrangement of PDL fibroblasts and the orientation of oxytalan fibers relative to the fibroblast cell axis have not been investigated under the condition of mechanical stress. We hypothesized that such stress would alter the arrangement and orientation of these cells and their oxytalan fibers. The aim of this study was to evaluate the effects of stretching strain on PDL fibroblasts, focusing on the cellular arrangement and orientation of oxytalan fibers relative to the long cell axis in cell/matrix layers by staining the major component of the fibers, fibrillin-1. The angle between the long cell axis and the oxytalan fibers was approximately 70 degrees under both non-stretching and stretching conditions. Moreover, stretching induced the rearrangement of the cells. This is the first study to demonstrate that stretching induces the rearrangement of the PDL fibroblasts without altering the angle between the long cell axis and the oxytalan fibers. These results may reflect the orientation of oxytalan fibers in the PDL under the condition of mechanical stress.