期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Efficient Solvent- and Catalyst-Free Syntheses of Imine Derivatives Applying the Pressure Reduction Technique: Remarkable Change of the Reaction Rate with the Phase Transition
1
作者 Shoko Suzuki Shujiro Sakaki +15 位作者 Shinji Ishizuka Tomomichi Nishino Hiroyuki Ito Risehiro Nonaka Motoyoshi Noike Takeshi Kodama Hajime Nozaka Tsuneyuki Sato Hitoshi Agematsu Koichi Maruyama Shun Oyamada Takashi Kuroishi kazuma sasaki Kei Yagawa Mami Yoshioka Yasuo Yokoyama 《Green and Sustainable Chemistry》 2018年第2期167-179,共13页
Because imines could be used as convenient starting materials in various fields, the development of an easy synthetic method of imine was strongly desired. In response to this demand, we thought that it would be an ef... Because imines could be used as convenient starting materials in various fields, the development of an easy synthetic method of imine was strongly desired. In response to this demand, we thought that it would be an effective synthesis method if an aldehyde and an amine could be reacted to give an imine in good yield under solvent- and catalyst-free conditions. In fact, we tried the reaction of benzaldehyde with various amines under solvent- and catalyst-free conditions followed by removal of water that was produced in the reaction system by a vacuum pump, and desired imines could be obtained in good yields. Observation of this reaction using a nuclear magnetic resonance spectrometer revealed that the reaction rate was extremely fast at the initial stage but slowed over time. However, the reaction of benzaldehyde with aniline differed greatly, and the reaction rate dramatically improved in 47 - 48 minutes after the start of the reaction. At this time, we found that the reaction system underwent a phase transition from the liquid phase to the solid phase. 展开更多
关键词 SOLVENT-FREE CATALYST-FREE Pressure REDUCTION TECHNIQUE IMINE Reaction Rate Phase TRANSITION
下载PDF
Alveolar macrophage functions and DNA damage in cigarette smoke-exposed mice
2
作者 Yuriko Hirono Yasuyuki Tanahashi +8 位作者 kazuma sasaki Kenjiro Konno Yuki Shirai Kengo Kobayashi Azusa Someya Sumire Inaga Masaaki Sakura Kent E. Pinkerton Minoru Takeuchi 《Advances in Bioscience and Biotechnology》 2013年第8期1-7,共7页
Alveolar macrophages (AM) are known to play an essential role in lung defense through their ability to remove the foreign matters reaching the lung alveoli. Cigarette smoke (CS) is a critical risk factor for many lung... Alveolar macrophages (AM) are known to play an essential role in lung defense through their ability to remove the foreign matters reaching the lung alveoli. Cigarette smoke (CS) is a critical risk factor for many lung diseases. CS is inhaled into the lung by respiretion and affects AM. It has been previously reported that CS induces inhibition of cytokine production, cell surface receptor expression and antigen presentation in AM. However, the relationship of immune suppression and DNA damage caused by CS in AM is still unclear. Therefore, in this study, we investigated AM immune function and DNA damage in CS-exposed mice. Mice were exposed to CS of 20 cigarettes/day during 10 days using a HambrugⅡsmoking machine. After exposure, AM were obtained by bronchoalveolar lavage. The number of AM was significantly increased in CS-exposed mice compared with non-CS-exposed mice. Phagocytic activity of AM was significantly inhibited by CS exposure. Percentage of CD11b-, CD14-, Toll-like receptor (TLR)2- or TLR4-positive cells was significantly decreased in CS-exposed mice compared with non-CS-exposed mice. Interleukin-1β mRNA expression in lipopolysaccharide-stimulated AM was significantly inhibited by CS exposure. Intracellular reactive oxygen species (ROS) (, H2O2) production of AM was significantly increased, and DNA damage was induced by CS exposure. These results suggest that impaired immune functions by CS exposure may be related to DNA damage via excessive ROS induced by CS. These alterations of AM caused by CS could be associated with infection and development of pulmonary diseases. 展开更多
关键词 ALVEOLAR MACROPHAGES Phagocytic Activity ROS Production DNA Damage CIGARETTE SMOKE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部