Workload characterization is critical for resource management and scheduling.Recently,with the fast development of container technique,more and more cloud service providers like Google and Alibaba adopt containers to ...Workload characterization is critical for resource management and scheduling.Recently,with the fast development of container technique,more and more cloud service providers like Google and Alibaba adopt containers to provide cloud services,due to the low overheads.However,the characteristics of co-located diverse services(e.g.,interactive on-line services,off-line computing services)running in containers are still not clear.In this paper,we present a comprehensive analysis of the characteristics of co-located workloads running in containers on the same server from the perspective of hardware events.Our study quantifies and reveals the system behavior from the micro-architecture level when workloads are running in different co-location patterns.Through the analysis of typical hardware events,we provide recommended/unrecommended co-location workload patterns which provide valuable deployment suggestions for datacenter administrators.展开更多
基金This work is supported by the National Key Research and Development Program of China under Grant No.2018YFB1004804the National Natural Science Foundation of China under Grant No.61702492the Shenzhen Basic Research Program under Grant Nos.JCYJ20170818153016513 and JCYJ20170307164747920,and Alibaba Innovative Research(AIR)Project.
文摘Workload characterization is critical for resource management and scheduling.Recently,with the fast development of container technique,more and more cloud service providers like Google and Alibaba adopt containers to provide cloud services,due to the low overheads.However,the characteristics of co-located diverse services(e.g.,interactive on-line services,off-line computing services)running in containers are still not clear.In this paper,we present a comprehensive analysis of the characteristics of co-located workloads running in containers on the same server from the perspective of hardware events.Our study quantifies and reveals the system behavior from the micro-architecture level when workloads are running in different co-location patterns.Through the analysis of typical hardware events,we provide recommended/unrecommended co-location workload patterns which provide valuable deployment suggestions for datacenter administrators.