期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mathematical analysis of SOFC based on co-ionic conducting electrolyte 被引量:2
1
作者 ke-qing zheng Meng Ni +1 位作者 Qiong Sun Li-Yin Shen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第3期388-394,共7页
In co-ionic conducting solid oxide fuel cell (SOFC), both oxygen ion (O2) and proton (H+) can transport through the electrolyte, generating steam in both the an-ode and cathode. Thus the mass transport phenomen... In co-ionic conducting solid oxide fuel cell (SOFC), both oxygen ion (O2) and proton (H+) can transport through the electrolyte, generating steam in both the an-ode and cathode. Thus the mass transport phenomenon in the electrodes is quite different from that in conventional SOFC with oxygen ion conducting electrolyte (O-SOFC) or with proton conducting electrolyte (H-SOFC). The generation of steam in both electrodes also affects the concentration over-potential loss and further the SOFC performance. However, no detailed modeling study on SOFCs with co-ionic electrolyte has been reported yet. In this paper, a new mathematical model for SOFC based on co-ionic electrolyte was developed to predict its actual performance considering three major kinds of overpotentials. Ohm's law and the Butler-Volmer formula were used to model the ion conduction and electrochemical reactions, respectively. The dusty gas model (DGM) was employed to simulate the mass transport processes in the porous electrodes. Parametric simulations were performed to investigate the effects of proton transfer number (tH) and current density (jtotal) on the cell performance. It is interesting to find that the co-ionic conducting SOFC could perform better than O-SOFC and H-SOFC by choosing an appropriate proton transfer number. In addition, the co-ionic SOFC shows smaller difference between the anode and cathode concentration overpotentials than O-SOFC and H-SOFC at certain t H values. The results could help material selection for enhancing SOFC performance. 展开更多
关键词 Co-ionic electrolyte Proton transport number Concentration overpotential Mass transport Model
下载PDF
Analysis of ice slurry production by direct contact heat transfer of air and water solution 被引量:2
2
作者 Xue-jun ZHANG ke-qing zheng +3 位作者 Ling-shi WANG Wei WANG Min JIANG Sheng-ying ZHAO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第8期583-588,共6页
In this paper, a novel system using direct contact heat transfer between air and water solution was proposed to generate ice slurry. The heat transfer process and the system performance were studied; energy efficiency... In this paper, a novel system using direct contact heat transfer between air and water solution was proposed to generate ice slurry. The heat transfer process and the system performance were studied; energy efficiency coefficients of 0.038, 0.053, and 0.064 were obtained using different solutions. An empirical relationship between the volumetric heat transfer coefficient U v and the main parameters was obtained by fitting the experimental data. The U v calculated from the empirical formula agreed with the experimental U v quite well with a relative error of less than 15%. Based on the empirical formula, a laboratory-scale direct contact ice slurry generator was then constructed, with practical application in mind. If the air flow rate is fixed at 200 m 3 /h, the ice production rate will be 0.091 kg/min. The experimental results also showed that the cold energy consumption of the air compressor accounted for more than half of the total amount. To improve the system energy efficiency coefficient, it is necessary to increase the air pipes insulation and the solution's thermal capacity, and also it is appropriate to utilize the free cold energy of liquefied natural gas (LNG). 展开更多
关键词 Ice slurry GENERATOR Air and water solution Direct contact Volumetric heat transfer coefficient Liquefied naturalgas (LNG)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部