Microwave transmission lines in wearable systems are easily damaged after frequent mechanical deformation,posing a severe threat to wireless communication.Here,we report a new strategy to achieve stretchable microwave...Microwave transmission lines in wearable systems are easily damaged after frequent mechanical deformation,posing a severe threat to wireless communication.Here,we report a new strategy to achieve stretchable microwave transmission lines with superior reliability and durability by integrating a self-healable elastomer with serpentine-geometry plasmonic meta-waveguide to support the spoof surface plasmon polariton(SSPP).After mechanical damage,the self-healable elastomer can autonomously repair itself to maintain the electromagnetic performance and mechanical strength.Meanwhile,the specially designed SSPP structure exhibits excellent stability and damage resistance.Even if the self-healing process has not been completed or the eventual repair effect is not ideal,the spoof plasmonic meta-waveguide Can still maintain reliable performance.Self-healing material enhances strength and durability,while the SSPP improves stability and gives more tolerance to the self-healing process.Our design coordinates the structural design with material synthesis to maximize the advantages of the SSPP and self-healing material,signifcantly improving the relability and durability of stretchable microwave transmission lines.We also perform communication quality experiments to demonstrate the potential of the proposed meta-waveguide as interconnects in future body area network systems.展开更多
基金the National Science Funds for Distinguished Young Scientists under grant number 61925103the Project for Jiangsu Specially-Appointed Professor,the Jiangsu Innovation Team Program,the Fundamental Research Funds for the Central Universities(2242022k30008)+1 种基金the National Natural Science Foundation of China(NSFC)6210010385the National Natural Science Foundation of China(Grant No.21631006 and 21771100).
文摘Microwave transmission lines in wearable systems are easily damaged after frequent mechanical deformation,posing a severe threat to wireless communication.Here,we report a new strategy to achieve stretchable microwave transmission lines with superior reliability and durability by integrating a self-healable elastomer with serpentine-geometry plasmonic meta-waveguide to support the spoof surface plasmon polariton(SSPP).After mechanical damage,the self-healable elastomer can autonomously repair itself to maintain the electromagnetic performance and mechanical strength.Meanwhile,the specially designed SSPP structure exhibits excellent stability and damage resistance.Even if the self-healing process has not been completed or the eventual repair effect is not ideal,the spoof plasmonic meta-waveguide Can still maintain reliable performance.Self-healing material enhances strength and durability,while the SSPP improves stability and gives more tolerance to the self-healing process.Our design coordinates the structural design with material synthesis to maximize the advantages of the SSPP and self-healing material,signifcantly improving the relability and durability of stretchable microwave transmission lines.We also perform communication quality experiments to demonstrate the potential of the proposed meta-waveguide as interconnects in future body area network systems.