To better understand the complex process of wave transformation and associated hydrodynamics over various fringing reef profiles, numerical experiments were conducted with a one-dimensional (1D) Boussinesq wave mode...To better understand the complex process of wave transformation and associated hydrodynamics over various fringing reef profiles, numerical experiments were conducted with a one-dimensional (1D) Boussinesq wave model. The model is based on higher-order Boussinesq equations and a higher-accuracy finite difference method. The dominant energy dissipation in the surf zone, wave breaking, and bottom friction were considered by use of the eddy viscosity concept and quadratic bottom friction law, respectively. Numerical simulation was conducted for a wide range of wave conditions and reef profiles. Good overall agreement between the computed results and the measurements shows that this model is capable of describing wave processes in the fringing reef environment. Numerical experiments were also conducted to track the source of underestimation of setup for highly nonlinear waves. Linear properties (including dispersion and shoaling) are found to contribute little to the underestimation; the low accuracy in nonlinearity and the ad hoc method for treating wave breaking may be the reason for the problem.展开更多
A novel numerical piston-type wave-maker toolbox for the OpenFOAM is developed and demonstrated in this paper. This toolbox is implemented in C++ for improving the solutions of nonlinear wave problems in the field of ...A novel numerical piston-type wave-maker toolbox for the OpenFOAM is developed and demonstrated in this paper. This toolbox is implemented in C++ for improving the solutions of nonlinear wave problems in the field of hydrodynamics. As a toolbox that generates waves using the piston-type method only, it contains several frequently used functions, including the generation and the absorption of waves of various forms, an active absorption system and the porous media flow. Furthermore, to illustrate the operability of the toolbox, some validations and applications are presented, including the regular waves, the irregular waves, and the solitary waves. In each case, a satisfactory agreement is obtained in comparison with the published experimental or theoretical results,so this toolbox may be applied with a considerable confidence.展开更多
基金supported by the National Natural Science Foundation of China(Grants No.51009018 and 51079024)the National Marine Environment Monitoring Center,State Oceanic Administration,P.R.China(Grant No.210206)
文摘To better understand the complex process of wave transformation and associated hydrodynamics over various fringing reef profiles, numerical experiments were conducted with a one-dimensional (1D) Boussinesq wave model. The model is based on higher-order Boussinesq equations and a higher-accuracy finite difference method. The dominant energy dissipation in the surf zone, wave breaking, and bottom friction were considered by use of the eddy viscosity concept and quadratic bottom friction law, respectively. Numerical simulation was conducted for a wide range of wave conditions and reef profiles. Good overall agreement between the computed results and the measurements shows that this model is capable of describing wave processes in the fringing reef environment. Numerical experiments were also conducted to track the source of underestimation of setup for highly nonlinear waves. Linear properties (including dispersion and shoaling) are found to contribute little to the underestimation; the low accuracy in nonlinearity and the ad hoc method for treating wave breaking may be the reason for the problem.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51579034the Public Science and Technology Research Funds Projects of Ocean (Grant No. 201405025).
文摘A novel numerical piston-type wave-maker toolbox for the OpenFOAM is developed and demonstrated in this paper. This toolbox is implemented in C++ for improving the solutions of nonlinear wave problems in the field of hydrodynamics. As a toolbox that generates waves using the piston-type method only, it contains several frequently used functions, including the generation and the absorption of waves of various forms, an active absorption system and the porous media flow. Furthermore, to illustrate the operability of the toolbox, some validations and applications are presented, including the regular waves, the irregular waves, and the solitary waves. In each case, a satisfactory agreement is obtained in comparison with the published experimental or theoretical results,so this toolbox may be applied with a considerable confidence.