期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang,Anhui,and adjacent areas,and its tectonic implications 被引量:23
1
作者 Cheng Li HuaJian Yao +5 位作者 Yuan Yang Song Luo KangDong wang kesong wan Jian Wen Bin Liu 《Earth and Planetary Physics》 CSCD 2020年第3期317-328,共12页
The Tan-Lu fault zone is a large NNE-trending fault zone in eastern China.Investigations of the structures of the fault zone and its surrounding areas have attracted much attention.In this study,we used dense-array am... The Tan-Lu fault zone is a large NNE-trending fault zone in eastern China.Investigations of the structures of the fault zone and its surrounding areas have attracted much attention.In this study,we used dense-array ambient noise tomography to construct a threedimensional shear wave velocity model of shallow crust in an area about 80km×70km in Lujiang,Anhui Province,eastern China.For approximately one month we collected continuous ambient noise signals recorded by 90 short-period seismographs in the region,and obtained the short-period Rayleigh wave empirical Green's functions between stations by the cross-correlation method;we also extracted 0.5–8 s fundamental mode Rayleigh wave group velocity and phase velocity dispersion curves.Based on the direct surface wave tomography method,we jointly inverted the group velocity and phase velocity dispersion data of all paths and obtained the 3-D shear wave velocity structure in the depth range of 0–5 km.The results revealed important geological structural features of the study area.In the north region,the sedimentary center of the Hefei Basin—the southwestern part of the Chaohu Lake—shows a significant low-velocity anomaly to a depth of at least 5 km.The southwestern and southeastern regions of the array are the eastern margin of the Dabie orogenic belt and the intrusion area of Luzong volcanic rocks,respectively,and both show obvious high-speed anomalies;the sedimentary area within the Tan-Lu fault zone(about 10 km wide)shows low-velocity anomalies.However,the volcanic rock intrusion area in the fault zone is shown as high velocity.Our shallow crustal imaging results reflect the characteristics of different structures in the study area,especially the high-speed intrusive rocks in the Tan-Lu fault zone,which were probably partially derived from the magmatic activity of Luzong volcanic basin.From the Late Cretaceous to Early Tertiary,the Tan-Lu fault zone was in a period of extensional activity;the special stress environment and the fractured fault zone morphology provided conditions for magma in the Luzong volcanic basin to intrude into the Tan-Lu fault zone in the west.Our 3-D model can also provide important information for deep resource exploration and earthquake strong ground motion simulation. 展开更多
关键词 Tan-Lu fault zone Lujiang of Anhui ambient noise tomography shallow crust structure intrusive rocks
下载PDF
High-resolution 3D crustal S-wave velocity structure of the MiddleLower Yangtze River Metallogenic Belt and implications for its deep geodynamic setting 被引量:23
2
作者 Song LUO Huajian YAO +4 位作者 Qiusheng LI Weitao wanG kesong wan Yafeng MENG Bin LIU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2019年第9期1361-1378,共18页
The Middle-Lower Yangtze River Metallogenic Belt(MLYMB) is an important mineral resource region in China.High-resolution crustal models can provide crucial constraints to understand the ore-forming processes and geody... The Middle-Lower Yangtze River Metallogenic Belt(MLYMB) is an important mineral resource region in China.High-resolution crustal models can provide crucial constraints to understand the ore-forming processes and geodynamic setting in this region. Using ambient seismic noise from 107 permanent and 82 portable stations in the MLYMB and the adjacent area,we present a new high-resolution 3D S-wave velocity model of this region. We first extract 5–50 s Rayleigh wave phase velocity dispersion data by calculating ambient noise cross-correlation functions(CFs) and then use the surface wave direct inversion method to invert the mixed path travel times for the 3D S-wave velocity structure. Checkerboard tests show that the horizontal resolution of the 3D S-wave velocity model is approximately 0.5°–1.0° and that the vertical resolution decreases with increasing noise and depth. Our high-resolution 3D S-wave velocity model reveals:(1) AV-shaped high-velocity zone(HVZ) is located in the lower crust and the uppermost mantle in the study region. The western branch of the HVZ passes through the Jianghan Basin,the Qinling-Dabie orogenic belt and the Nanxiang Basin. The eastern branch, which almost completely covers the main body of the MLYMB, is located near the Tanlu Fault. The low-velocity anomalies between the western and eastern branches are located in the area of the Qinling-Dabie orogenic belt.(2) High-velocity uplifts(HVUs) are common in the crust of the MLYMB,especially in the areas near the Tanlu Fault, the Changjiang Fault and the Yangxin-Changzhou Fault. The intensities of the HVUs gradually weaken from west to east. The V-shaped HVZ in the lower crust and uppermost mantle and the HVUs in the middle and lower crust likely represent cooled mantle intrusive rocks. During the Yanshanian period, fault systems formed in the MLYMB due to the convergence between the South China Plate and the North China Plate, the multiple-direction drifting of the PaleoPacific Plate and its subduction beneath the Eurasian Plate. The dehydration of the cold oceanic crust led to partial melting in the upper mantle. Temperature differences caused strong convection of the upper mantle material that underplated the lower crust and rose to near the surface along the deep fault systems. After mixing with the crustal materials, mineralization processes, such as assimilation and fractional crystallization, occurred in the MLYMB. 展开更多
关键词 Middle-Lower YANGTZE River METALLOGENIC Belt Ambient noise Surface wave CRUSTAL structure Mineralization dynamics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部