A wireless passive sensor array based on inductive-capacitive (LC) resonant circuits capable of simultaneously tracking two points of force loading is described. The sensor consisted of a planar spiral inductor connec...A wireless passive sensor array based on inductive-capacitive (LC) resonant circuits capable of simultaneously tracking two points of force loading is described. The sensor consisted of a planar spiral inductor connected to two capacitors forming a resonant circuit with two resonant frequencies. When a load was applied to one or both of the parallel plate capacitors, the distance between the plates of the capacitor was altered, thus shifting the observed resonant peaks. Testing illustrated that applied loading to a particular capacitor caused a significant shift in one of the resonant peaks and also a smaller shift in another resonant peak. This interdependence resulted from each capacitive element being connected to the same inductive spiral and was accounted for with a developed analysis algorithm. To validate the experimental observation, a circuit simulation was also generated to model the sensor behavior with changing force/displacement. The novelty of this system lies not only in its wireless passive nature, but also in the fact that a single LC sensor was fashioned to detect more than one point simultaneously.展开更多
A new system was designed to selectively control cellular adhesion to medical implants. The system is based on magnetoelastic (ME) materials that can be remotely set to generate mechanical vibrations at submicron leve...A new system was designed to selectively control cellular adhesion to medical implants. The system is based on magnetoelastic (ME) materials that can be remotely set to generate mechanical vibrations at submicron levels with predetermined amplitude and frequency. Previous studies have demonstrated the capacity of these vibrations to control cellular adhesion at a substrate surface. In this work, an ME film with two conjoined strips was developed to investigate the potential of this system to provide region specific control of cellular adhesion. In vitro cell culture experiments performed with L929 fibroblasts indicate that cellular adhesion can be increased or decreased at different regions of the film by changing the frequency of the magnetic field.展开更多
文摘A wireless passive sensor array based on inductive-capacitive (LC) resonant circuits capable of simultaneously tracking two points of force loading is described. The sensor consisted of a planar spiral inductor connected to two capacitors forming a resonant circuit with two resonant frequencies. When a load was applied to one or both of the parallel plate capacitors, the distance between the plates of the capacitor was altered, thus shifting the observed resonant peaks. Testing illustrated that applied loading to a particular capacitor caused a significant shift in one of the resonant peaks and also a smaller shift in another resonant peak. This interdependence resulted from each capacitive element being connected to the same inductive spiral and was accounted for with a developed analysis algorithm. To validate the experimental observation, a circuit simulation was also generated to model the sensor behavior with changing force/displacement. The novelty of this system lies not only in its wireless passive nature, but also in the fact that a single LC sensor was fashioned to detect more than one point simultaneously.
文摘A new system was designed to selectively control cellular adhesion to medical implants. The system is based on magnetoelastic (ME) materials that can be remotely set to generate mechanical vibrations at submicron levels with predetermined amplitude and frequency. Previous studies have demonstrated the capacity of these vibrations to control cellular adhesion at a substrate surface. In this work, an ME film with two conjoined strips was developed to investigate the potential of this system to provide region specific control of cellular adhesion. In vitro cell culture experiments performed with L929 fibroblasts indicate that cellular adhesion can be increased or decreased at different regions of the film by changing the frequency of the magnetic field.