Two-dimensional graphene and its derivatives exhibiting distinct physiochemical properties are intriguing building blocks for researchers from a large variety of scientific fields.Assembling graphene-based materials i...Two-dimensional graphene and its derivatives exhibiting distinct physiochemical properties are intriguing building blocks for researchers from a large variety of scientific fields.Assembling graphene-based materials into membrane layers brings great potentials for high-efficiency membrane processes.Particularly,pervaporation by graphene-based membranes has been intensively studied with respect to the membrane design and preparation.This review aims to provide an overview on the graphene-based membranes for pervaporation processes ranged from fabrication to application.Physical or chemical decoration of graphene-based materials is elaborated regarding their effects on the microstructure and performance.The mass transport of pervaporation through graphene-based membranes is introduced,and relevant mechanisms are described.Furthermore,performances of state-of-the-art graphene-based membranes for different pervaporation applications are summarized.Finally,the perspectives of current challenges and future directions are presented.展开更多
Structural manipulation of graphene oxide (GO) building blocks has been widely researched. Concerning GO membranes for separation applications, the validity and maintenance of their microscopic structures in the chemi...Structural manipulation of graphene oxide (GO) building blocks has been widely researched. Concerning GO membranes for separation applications, the validity and maintenance of their microscopic structures in the chemical environment are pivotal for effective separation at the molecular scale. Cationic interactions with both aromatic rings and oxygenated functional groups of GO make metal ions intriguing for physically and chemically structural reinforcement. By filtrating GO suspension through the substrate loaded with cations, stacking o f GO nanosheets and diffusion of cations steadily evolve simultaneously in an aqueous environment without flocculation. Thus, thin and homogeneous GO membrane is obtained. Divalent and monovalent cations were studied regarding their interactions with GO, and the performance of correspondingly functionalized membranes was evaluated. The divalent cation-stabilized membranes have favorable stability in the separation of water/ethanol. This facile fabrication and functionalization method may also be applicable for structure construction of other two-dimensional materials.展开更多
基金financially supported by the National Natural Science Foundation of China(51861135203,91934303)the Innovative Research Team Program by the Ministry of Education of China(IRT_17R54)the Topnotch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP)。
文摘Two-dimensional graphene and its derivatives exhibiting distinct physiochemical properties are intriguing building blocks for researchers from a large variety of scientific fields.Assembling graphene-based materials into membrane layers brings great potentials for high-efficiency membrane processes.Particularly,pervaporation by graphene-based membranes has been intensively studied with respect to the membrane design and preparation.This review aims to provide an overview on the graphene-based membranes for pervaporation processes ranged from fabrication to application.Physical or chemical decoration of graphene-based materials is elaborated regarding their effects on the microstructure and performance.The mass transport of pervaporation through graphene-based membranes is introduced,and relevant mechanisms are described.Furthermore,performances of state-of-the-art graphene-based membranes for different pervaporation applications are summarized.Finally,the perspectives of current challenges and future directions are presented.
基金financially supported by the National Natural Science Foundation of China (21476107, 21490585, 21776125 and 51861135203)the Innovative Research Team Program by the Ministry of Education of China (IRT17R54)the Topnotch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP)
文摘Structural manipulation of graphene oxide (GO) building blocks has been widely researched. Concerning GO membranes for separation applications, the validity and maintenance of their microscopic structures in the chemical environment are pivotal for effective separation at the molecular scale. Cationic interactions with both aromatic rings and oxygenated functional groups of GO make metal ions intriguing for physically and chemically structural reinforcement. By filtrating GO suspension through the substrate loaded with cations, stacking o f GO nanosheets and diffusion of cations steadily evolve simultaneously in an aqueous environment without flocculation. Thus, thin and homogeneous GO membrane is obtained. Divalent and monovalent cations were studied regarding their interactions with GO, and the performance of correspondingly functionalized membranes was evaluated. The divalent cation-stabilized membranes have favorable stability in the separation of water/ethanol. This facile fabrication and functionalization method may also be applicable for structure construction of other two-dimensional materials.