The water-cooled ceramic breeder (WCCB) blanket is one of the blanket candidates for Chinese fusion engineering testing reactor (CFETR) and is being developed at the Institute of Plasma Physics, Chinese Academy of Sci...The water-cooled ceramic breeder (WCCB) blanket is one of the blanket candidates for Chinese fusion engineering testing reactor (CFETR) and is being developed at the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). This paper reviews design and evolution of the WCCB blanket for CFETR, and presents a new WCCB blanket design according to the latest CFETR core parameters (major and minor radii are R = 7.2 m and a = 2.2 m, respectively) and missions. This new design is expected to satisfy multiple CFETR operation modes of 0.2, 0.5, 1.0, and 1.5 GW fusion power and achieve tritium self-sufficiency. The feasibility of the updated blanket design is evaluated from the aspects of neutronics and thermo-hydraulics. Furthermore, the research and development (R&D) activities supporting to the WCCB blanket for CFETR are reported, including the design code, the water loop experiments, the pebble bed modeling and experiments, and the components fabrication technology.展开更多
In comparison with lithium-ion batteries(LIBs)with liquid electrolytes,all-solid-state lithium batteries(ASSLBs)have been considered as promising systems for future energy storage due to their safety and high energy d...In comparison with lithium-ion batteries(LIBs)with liquid electrolytes,all-solid-state lithium batteries(ASSLBs)have been considered as promising systems for future energy storage due to their safety and high energy density.As the pivotal component used in ASSLBs,composite solid polymer electrolytes(CSPEs),derived from the incorporation of inorganic fillers into solid polymer electrolytes(SPEs),exhibit higher ionic conductivity,better mechanical strength,and superior thermal/electrochemical stability compared to the single-component SPEs,which can significantly promote the electrochemical performance of ASSLBs.Herein,the recent advances of CSPEs applied in ASSLBs are presented.The effects of the category,morphology and concentration of inorganic fillers on the ionic conductivity,mechanical strength,electrochemical window,interfacial stability and possible Li+transfer mechanism of CSPEs will be systematically discussed.Finally,the challenges and perspectives are proposed for the future development of high-performance CSPEs and ASSLBs.展开更多
基金the financial support of the National Key R&D Program of China(Grants2017YFE0300503 and 2017YFE0300604)the National Natural Science Foundation of China(Grant 11775256)
文摘The water-cooled ceramic breeder (WCCB) blanket is one of the blanket candidates for Chinese fusion engineering testing reactor (CFETR) and is being developed at the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). This paper reviews design and evolution of the WCCB blanket for CFETR, and presents a new WCCB blanket design according to the latest CFETR core parameters (major and minor radii are R = 7.2 m and a = 2.2 m, respectively) and missions. This new design is expected to satisfy multiple CFETR operation modes of 0.2, 0.5, 1.0, and 1.5 GW fusion power and achieve tritium self-sufficiency. The feasibility of the updated blanket design is evaluated from the aspects of neutronics and thermo-hydraulics. Furthermore, the research and development (R&D) activities supporting to the WCCB blanket for CFETR are reported, including the design code, the water loop experiments, the pebble bed modeling and experiments, and the components fabrication technology.
基金supported by the Innovative and Entrepreneurial Talent Plan(Jiangsu Province,China)。
文摘In comparison with lithium-ion batteries(LIBs)with liquid electrolytes,all-solid-state lithium batteries(ASSLBs)have been considered as promising systems for future energy storage due to their safety and high energy density.As the pivotal component used in ASSLBs,composite solid polymer electrolytes(CSPEs),derived from the incorporation of inorganic fillers into solid polymer electrolytes(SPEs),exhibit higher ionic conductivity,better mechanical strength,and superior thermal/electrochemical stability compared to the single-component SPEs,which can significantly promote the electrochemical performance of ASSLBs.Herein,the recent advances of CSPEs applied in ASSLBs are presented.The effects of the category,morphology and concentration of inorganic fillers on the ionic conductivity,mechanical strength,electrochemical window,interfacial stability and possible Li+transfer mechanism of CSPEs will be systematically discussed.Finally,the challenges and perspectives are proposed for the future development of high-performance CSPEs and ASSLBs.