ZnO-MxOy heterostructures (M=Co, Mn, Ni, or In) are fabricated via hydrothermal synthesis method. X-ray diffraction and Fourier-transform infrared spectroscopy analyses endorse the successive formation of the various ...ZnO-MxOy heterostructures (M=Co, Mn, Ni, or In) are fabricated via hydrothermal synthesis method. X-ray diffraction and Fourier-transform infrared spectroscopy analyses endorse the successive formation of the various heterostructures. Field Emission Scanning electron microscope and Brunauer-Emmett-Teller (BET) surface area studies confirm the porous nature of the heterostructures obtained. The band gaps of various heterostructures are calculated that, 3.1, 2.71, 2.64, and 2.19 eV for ZnO-NiO, ZnO-In2O3, ZnO-Co3O4, and ZnO-MnO2, respectively. The photocatalytic activities of the fabricated heterostructures are investigated through the degradation of phenol under direct sunlight irradiation. The results show that the photocatalytic activity is affected by the conduction band (CB) and valence band (VB) positions rather than surface area of ZnO-MxOy heterostructure nanocomposites.展开更多
A facile fabrication and processing of cerium oxide-graphene oxide(CeO_2-GO) hybrid nanocomposites without the use of any surfactant or any organic solvents using chemical method and treatment with microwave irradiati...A facile fabrication and processing of cerium oxide-graphene oxide(CeO_2-GO) hybrid nanocomposites without the use of any surfactant or any organic solvents using chemical method and treatment with microwave irradiation technique are reported. In-situ hexagonal nano cerium oxide particles embedded on the layered surface of GO sheets were investigated for the photodegradation of dyes, removal of chromium Cr(VI) ions and against antibacterial studies. The results imply that hybrid nanocomposites shows enhanced 5-folds of photocatalytic activities in UV(ultraviolet) light irradiation and exhibited rapid efficiency in the elimination of chromium ion better than the pure GO and CeO_2, which are inhibited by competent photosensitive electron inoculation and controlling the electron–hole recombination. The synergetic effect of CeO_2-GO composites played a vital role in showing better results against model bacterium than GO and CeO_2 are due to higher physical interaction endorsed to the stress of membranes acute by piercing edges,large surface area, and higher adsorptive conditions of graphene oxide sheets tailored with ceria particles. The amount of charge transferred at the interface increases with the concentration of O atoms, demonstrating the interaction between CeO_2 and GO is much stronger than CeO_2 and GO are due to the decrease of the average equilibrium distance between the interfaces. The CeO_2-GO interface staggered band alignments existing between the CeO_2 surfaces and GO which shows an excellent synergism. The structure and morphology of composites were tested by X-ray diffraction(XRD), Fourier transform infrared(FTIR), Raman, X-ray photoelectron spectroscopy(XPS), and high-resolution transmission electron microscope(HR-TEM).展开更多
文摘ZnO-MxOy heterostructures (M=Co, Mn, Ni, or In) are fabricated via hydrothermal synthesis method. X-ray diffraction and Fourier-transform infrared spectroscopy analyses endorse the successive formation of the various heterostructures. Field Emission Scanning electron microscope and Brunauer-Emmett-Teller (BET) surface area studies confirm the porous nature of the heterostructures obtained. The band gaps of various heterostructures are calculated that, 3.1, 2.71, 2.64, and 2.19 eV for ZnO-NiO, ZnO-In2O3, ZnO-Co3O4, and ZnO-MnO2, respectively. The photocatalytic activities of the fabricated heterostructures are investigated through the degradation of phenol under direct sunlight irradiation. The results show that the photocatalytic activity is affected by the conduction band (CB) and valence band (VB) positions rather than surface area of ZnO-MxOy heterostructure nanocomposites.
基金University of Mysore (F.No.14-4/ 2012 (NS/PE),Dated 23.02.2012),University with potential for excellence,Mysore,University Grants Commission (UGC),India for funds supporting
文摘A facile fabrication and processing of cerium oxide-graphene oxide(CeO_2-GO) hybrid nanocomposites without the use of any surfactant or any organic solvents using chemical method and treatment with microwave irradiation technique are reported. In-situ hexagonal nano cerium oxide particles embedded on the layered surface of GO sheets were investigated for the photodegradation of dyes, removal of chromium Cr(VI) ions and against antibacterial studies. The results imply that hybrid nanocomposites shows enhanced 5-folds of photocatalytic activities in UV(ultraviolet) light irradiation and exhibited rapid efficiency in the elimination of chromium ion better than the pure GO and CeO_2, which are inhibited by competent photosensitive electron inoculation and controlling the electron–hole recombination. The synergetic effect of CeO_2-GO composites played a vital role in showing better results against model bacterium than GO and CeO_2 are due to higher physical interaction endorsed to the stress of membranes acute by piercing edges,large surface area, and higher adsorptive conditions of graphene oxide sheets tailored with ceria particles. The amount of charge transferred at the interface increases with the concentration of O atoms, demonstrating the interaction between CeO_2 and GO is much stronger than CeO_2 and GO are due to the decrease of the average equilibrium distance between the interfaces. The CeO_2-GO interface staggered band alignments existing between the CeO_2 surfaces and GO which shows an excellent synergism. The structure and morphology of composites were tested by X-ray diffraction(XRD), Fourier transform infrared(FTIR), Raman, X-ray photoelectron spectroscopy(XPS), and high-resolution transmission electron microscope(HR-TEM).