Crystallization of amorphous poly(lactic acid) (PLA) was investigated by exposing to vapor of acetone. The vapor of acetone induced crystallization of the amorphous PLA effectively. It took about 24 min to complete th...Crystallization of amorphous poly(lactic acid) (PLA) was investigated by exposing to vapor of acetone. The vapor of acetone induced crystallization of the amorphous PLA effectively. It took about 24 min to complete the crystallization of a 1 cm × 2 cm × 0.55 mm specimen at 25℃. The crystallization rate increased with increasing of conducting temperature. The crystallization method yielded high crystallinity about 40%, which was almost equal to that attained by annealing or immersion methods conducted as references. The specimens crystallized by the vapor showed higher transparency than those prepared by the reference methods. The crystallization was induced by diffusion of acetone into the amorphous phase of PLA, and polarized optical photomicrographs cleared that the diffusion obeyed Fick type diffusion.展开更多
The crystallization and crystalline structure of syndiotactic-polypropylene (sPP) and syndiotactic-poly(1-butene) (sPB) blend containing 10 (Bl-10), 25 (Bl-25), 50 (Bl-50), 75 (Bl-75), and 90 (Bl-90) wt% of sPB, have ...The crystallization and crystalline structure of syndiotactic-polypropylene (sPP) and syndiotactic-poly(1-butene) (sPB) blend containing 10 (Bl-10), 25 (Bl-25), 50 (Bl-50), 75 (Bl-75), and 90 (Bl-90) wt% of sPB, have been investigated by means of differential scanning calorimetry (DSC), FT-IR, and wide-angle X-ray diffraction (WAXD) analyses. The melt-crystallization behavior of the blend samples was studied by DSC on the cooling process at constant rates. Bl-50, Bl-75, and Bl-90 showed lower crystallization temperatures than the neat sPP. sPP in Bl-75 showed the lowest crystallization rate among the blend samples. Bl-90 showed a two-phase molten state, and sPP in Bl-90 crystallized via two-stepprocess. Time evolution of FT-IR spectroscopy at room temperature detected conformational transformation of the sPP polymer chain in the blend samples of Bl-50 and Bl-75. The absorption peaks intensity in the FT-IR spectra derived from the helical conformations in the crystalline phase decreased, and the planar zigzag conformations in the amorphous and mesophase phases decreased over the crystallization time. The time evolution of the WAXD profile of Bl-90 indicated that sPP in the blend accelerated the crystallization of sPB. The crystallized Bl-10, Bl-25, and Bl-50 samples showed diffraction peaks in WAXD profiles and melting endothermic peak in DSC profiles derived from only the sPP crystal. The crystallinity and melting temperature of sPP in the crystallized Bl-10, Bl-25, and Bl-50 samples were almost independent of the sPB content. Both the crystalline structure of sPP and sPB were detected in Bl-75 and Bl-90. Bl-75 showed the lowest crystallinity and melting temperature of sPP among the blend samples.展开更多
文摘Crystallization of amorphous poly(lactic acid) (PLA) was investigated by exposing to vapor of acetone. The vapor of acetone induced crystallization of the amorphous PLA effectively. It took about 24 min to complete the crystallization of a 1 cm × 2 cm × 0.55 mm specimen at 25℃. The crystallization rate increased with increasing of conducting temperature. The crystallization method yielded high crystallinity about 40%, which was almost equal to that attained by annealing or immersion methods conducted as references. The specimens crystallized by the vapor showed higher transparency than those prepared by the reference methods. The crystallization was induced by diffusion of acetone into the amorphous phase of PLA, and polarized optical photomicrographs cleared that the diffusion obeyed Fick type diffusion.
文摘The crystallization and crystalline structure of syndiotactic-polypropylene (sPP) and syndiotactic-poly(1-butene) (sPB) blend containing 10 (Bl-10), 25 (Bl-25), 50 (Bl-50), 75 (Bl-75), and 90 (Bl-90) wt% of sPB, have been investigated by means of differential scanning calorimetry (DSC), FT-IR, and wide-angle X-ray diffraction (WAXD) analyses. The melt-crystallization behavior of the blend samples was studied by DSC on the cooling process at constant rates. Bl-50, Bl-75, and Bl-90 showed lower crystallization temperatures than the neat sPP. sPP in Bl-75 showed the lowest crystallization rate among the blend samples. Bl-90 showed a two-phase molten state, and sPP in Bl-90 crystallized via two-stepprocess. Time evolution of FT-IR spectroscopy at room temperature detected conformational transformation of the sPP polymer chain in the blend samples of Bl-50 and Bl-75. The absorption peaks intensity in the FT-IR spectra derived from the helical conformations in the crystalline phase decreased, and the planar zigzag conformations in the amorphous and mesophase phases decreased over the crystallization time. The time evolution of the WAXD profile of Bl-90 indicated that sPP in the blend accelerated the crystallization of sPB. The crystallized Bl-10, Bl-25, and Bl-50 samples showed diffraction peaks in WAXD profiles and melting endothermic peak in DSC profiles derived from only the sPP crystal. The crystallinity and melting temperature of sPP in the crystallized Bl-10, Bl-25, and Bl-50 samples were almost independent of the sPB content. Both the crystalline structure of sPP and sPB were detected in Bl-75 and Bl-90. Bl-75 showed the lowest crystallinity and melting temperature of sPP among the blend samples.