期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Relationship between Nitrogen Atmospheric Deposition, Discharge and Concentration, and Monthly Change of Those in a River 被引量:1
1
作者 Toshisuke Maruyama Masashi Yoshida +2 位作者 keiji takase Hiroshi Takimoto Shigeo Ishikawa 《Journal of Water Resource and Protection》 2013年第3期283-293,共11页
The hypothesis that the product of discharge and concentration of nitrogen (N) in river water is equal to the atmospheric deposition was verified in the mountainous basin of the Tedori River in Japan. To verify this r... The hypothesis that the product of discharge and concentration of nitrogen (N) in river water is equal to the atmospheric deposition was verified in the mountainous basin of the Tedori River in Japan. To verify this relationship, long-term data?are required to eliminate the effect of short-term variation of the N components. The basin has very high mountains, including Mount Hakusan (2702 maltitude), which is covered with deep snow in winter. Therefore, limited data were used for the estimation of the deposition of the entire basin by assuming a linear relationship of altitude. As a result, it was found that the estimated N concentration coincided well with observed concentrations at six sites—the Shiramine and Kuwajima (upper stream), Nakajima (lower stream) and Dainichi dam, Tedori dam and Senami sites (middle stream). The seasonal variation of N concentrations was low in the snowmelt period and high in autumn through to winter. This was not due to the larger discharge in snowmelt season as it was also found that N deposition was high in winter and low in spring, which indicated a clear relationship between N concentration and monthly atmospheric deposition including N storage in snow pack. 展开更多
关键词 NITROGEN Balance Wet and Dry DEPOSITION ALTITUDE Dependence of Atmospheric DEPOSITION and Precipitation NITROGEN in SNOWPACK
下载PDF
Estimation of Unit Flood Discharge for Various Land Use Types with a Focus on Urbanization 被引量:1
2
作者 Manabu Segawa Toshisuke Maruyama keiji takase 《Open Journal of Modern Hydrology》 2016年第4期195-211,共17页
We proposed unit flood discharge model that defined as the discharge into end-order (smallest) drainage canals. The discharge acts an important role for estimating regional flooding by big rainfall events which leadin... We proposed unit flood discharge model that defined as the discharge into end-order (smallest) drainage canals. The discharge acts an important role for estimating regional flooding by big rainfall events which leading roughly estimation of flood discharge associated with land use changes as urbanization. In some areas of Japan, increased urbanization with insufficient drainage canal capacity has led to increasingly frequent flooding and flood damage. The aim of this study was to investigate the effect of urbanization on unit flood discharge using a runoff model for the Tedori River alluvial fan area, Japan. The discharge was studied as collecting runoff from paddy fields, upland crop fields, and residential lots. A runoff model for various land use types in the study area was developed using actual and physical properties of the runoff sites, and parameters for paddy fields. The model was tested using 54 big events and inputted those. The maximum total runoff ratio among different land use types was observed for residential lots, and the ratio remained relatively constant across different flood events. The minimum total runoff ratio was observed for irrigated paddy fields. There was a positive relationship between the total runoff ratio and total precipitation for all land use types. Whereas, the relationship between the peak runoff ratio and peak precipitation was variable. The runoff analysis was carried out using 60-min and 10-min precipitation data. For agricultural land, data for both intervals produced similar results. 展开更多
关键词 Unit Flood Discharge Total Runoff Ratio Peak Runoff Ratio Runoff Model Depression Storage
下载PDF
Quantitative Analysis of the Rate of Geochemical Weathering of Sulfur from Sedimentary Rocks Using Atmospheric Deposition, Concentration and River Discharge Data
3
作者 Toshisuke Maruyama Masashi Yoshida +3 位作者 keiji takase Hiroshi Takimoto Shigeo Ishikawa Sadao Nagasaka 《Journal of Water Resource and Protection》 2013年第5期511-519,共9页
Quantitative analysis of the rate of geochemical weathering of sulfur (S) from sedimentary rocks (GeoS) was conducted using concentration (Cs) and discharge (Qs) data from the Tedori River and atmospheric deposition (... Quantitative analysis of the rate of geochemical weathering of sulfur (S) from sedimentary rocks (GeoS) was conducted using concentration (Cs) and discharge (Qs) data from the Tedori River and atmospheric deposition (AtdepS) in the basin. First, S fluxes were calculated using 16 years of Cs and Qs data. The annual average discharge of S (TotalS) was estimated at 8597 ton·year-1 (117.3 kg·ha-1·year-1). Of this, 1331 ton·year-1 was AtdepS (18.2 kg·ha-1·year-1) and another 7266 ton·year-1 was GeoS (99.1 kg·ha-1·year-1). Monthly changes in TotalS were investigated, which showed that GeoS was highest in summer, because of the air temperature, while AtdepS peaked in winter because of seasonal wind. Using Qs and AtdepS corrected for altitude, TotalS, AtdepS and GeoS were estimated at six sites, and among these sites we found that the TotalS per unit area values were random, depending on the site characteristics. In particular, the discharge from the Kuwajima site was remarkably high suggesting that the sedimentary rocks at this site had higher pyrite content than at the other sites. Finally, we also assessed the relationship between the characteristics of sedimentary rocks and GeoS in a range of rivers in the Hokuriku Region, and found that there was a close relationship between concentrations of SO42- greater than 10 mg·l-1 and sedimentary rocks containing the pyrite group. In addition, we estimated that the influence of GeoS was present when the concentration of SO42- in river water was greater than 2 - 3 mg·l-1 in the Hokuriku region. 展开更多
关键词 SULFUR BALANCE WET and Dry Deposition SULFUR CONCENTRATION ALTITUDE Dependence SULFUR Discharge from PYRITE
下载PDF
Long-Term Assessment of Nitrogen Pollution Load Potential for Groundwater by Mass Balance Analysis in the Tedori River Alluvial Fan Area, Japan
4
作者 Toshisuke Maruyama Masashi Yoshida +3 位作者 keiji takase Hiroshi Takimoto Shigeo Ishikawa Sadao Nagasaka 《Journal of Water Resource and Protection》 2013年第2期171-182,共12页
To evaluate the nitrogen pollution load in an aquifer, a water and nitrogen balance analysis was conducted over a thirty-five year period at five yearly intervals. First, we established a two-horizon model comprising ... To evaluate the nitrogen pollution load in an aquifer, a water and nitrogen balance analysis was conducted over a thirty-five year period at five yearly intervals. First, we established a two-horizon model comprising a channel/soil horizon, and an aquifer horizon, with exchange of water between the aquifer and river. The nitrogen balance was estimated from the product of nitrogen concentration and water flow obtained from the water balance analysis. The aquifer nitrogen balance results were as follows: 1) In the aquifer horizon, the total nitrogen pollution load potential (NPLP) peaked in the period 1981-1990 at 1800 t·yr-1;following this the NPLP rapidly decreased to about 600 t·yr-1 in the period 2006-2010. The largest NPLP input component of 1000 t·yr-1 in the period 1976-1990 was from farmland. Subsequently, farmland NPLP decreased to only 400 t·yr-1 between 2006 and 2010. The second largest input component, 600 t·yr-1, was effluent from wastewater treatment works (WWTWs) in the period 1986-1990;this also decreased markedly to about 100 t·yr-1 between 2006 and 2010;2) The difference between input and output in the aquifer horizon, used as an index of groundwater pollution, peaked in the period 1986-1990 at about 1200 t·yr-1. This gradually decreased to about 200 t·yr-1 by 2006-2010. 3) The temporal change in NPLP coincided with the nitrogen concentration of the rivers in the study area. In addition, nitrogen concentrations in two test wells were 1.0 mg·l-1 at a depth of 150 m and only 0.25 mg·l-1 at 50 m, suggesting gradual percolation of the nitrogen polluted water deeper in the aquifer. 展开更多
关键词 WATER BALANCE NITROGEN BALANCE GROUNDWATER POLLUTION Sewage Treatment WATER POLLUTION from Farmland NITROGEN POLLUTION Load POTENTIAL
下载PDF
Effects of land use change on hydrological cycle from forest to upland field in a catchment,Japan
5
作者 Chuan ZHANG keiji takase +2 位作者 Hiroki OUE Nobuhiro EBISU Haofang YAN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2013年第4期456-465,共10页
Understanding the effects of land use change on the hydrological cycle is very important for development of sustainable water resource in an upland field catchment.In this study,soil and hydrological properties in an ... Understanding the effects of land use change on the hydrological cycle is very important for development of sustainable water resource in an upland field catchment.In this study,soil and hydrological properties in an upland field catchment,which was reclaimed partially from a forest catchment,were compared with another forest catchment.The soil properties of surface and subsurface layers were investigated in the two catchments.The soil was compacted and waterholding capacity of soil in the upland field catchment became smaller after the reclamation from forest to upland field,which decreased infiltration rate and water storage in the soil layers.We found that peak discharge and direct runoff in the upland field catchment increased compared with the forest catchment.Annual evapotranspiration from the upland field catchment tended to be lower due to the change in vegetation type and soil properties.Furthermore,a semi-distributed hydrological model was applied in the upland field catchment to understand the integrated effects of reclamation on the hydrological cycle.The model parameters,which were determined using a nonlinear optimization technique—the Shuffled Complex Evolution method(SCE),were compared between the two catchments.The Nash and Sutcliffe coefficient was used to evaluate the model performance.The simulated results indicated that evapotranspiration was decreased and change in discharge was more obvious in the surface layer.We considered that declined infiltration and water storage and increased peak discharge and direct runoff have a negative impact on water resources in the upland field catchment.This study will provide information for forest managers in planning and making decisions for land and water resource management. 展开更多
关键词 land-use change hydrological processes upland field catchment forest catchment semi-distributed hydrological model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部