期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ZnFe_(2)O_(4)/BiVO_(4)Z-scheme heterojunction for efficient visible-light photocatalytic degradation of ciprofloxacin 被引量:1
1
作者 Beibei Wang kejiang qian +4 位作者 Weiping Yang Wenjing An Lan-Lan Lou Shuangxi Liu Kai Yu 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第11期1728-1740,共13页
A novel Z-scheme ZnFe_(2)O_(4)/BiVO_(4)heterojunction photocatalyst was successfully synthesized using a convenient solvothermal method and applied in the visible light photocatalytic degradation of ciprofloxacin,whic... A novel Z-scheme ZnFe_(2)O_(4)/BiVO_(4)heterojunction photocatalyst was successfully synthesized using a convenient solvothermal method and applied in the visible light photocatalytic degradation of ciprofloxacin,which is a typical antibiotic contaminant in wastewater.The heterostructure of as-synthesized catalysts was confirmed using X-ray diffraction,scanning electron microscopy,transmission electron microscopy and X-ray photoelectron spectroscopy characterizations.Compared with the singlephase counterparts,ZnFe_(2)O_(4)/BiVO_(4)demonstrated considerably enhanced photogenerated charge separation efficiencies because of the Z-scheme transfer mechanism of electrons between the composite photocatalysts.Consequently,the 30%ZnFe_(2)O_(4)/BiVO_(4)catalyst afforded a degradation rate of up to 97%of 20 mg/L ciprofloxacin under 30 min of visible light irradiation with a total organic carbon removal rate of 50%,which is an excellent activity compared with ever reported BiVO_(4)-based catalysts.In addition,the liquid chromatography-mass spectrometry and quantitative structure-activity relationships model analyses demonstrated that the toxicity of the intermediates was lower than that of the parent ciprofloxacin.Moreover,the as-synthesized ZnFe_(2)O_(4)/BiVO_(4)heterojunctions were quite stable and could be reused at least four times.This study thus provides a promising Z-scheme heterojunction photocatalyst for the efficient removal and detoxication of antibiotic pollutants from wastewater. 展开更多
关键词 ZnFe_(2)O_(4)/BiVO_(4) Z-scheme heterojunction photocatalytic degradation CIPROFLOXACIN
原文传递
Superior performance in visible-light-driven hydrogen evolution reaction of three-dimensionally ordered macroporous SrTiO_(3) decorated with Zn_(x)Cd_(1−x)S 被引量:1
2
作者 Huiying Quan kejiang qian +3 位作者 Ying Xuan Lan-Lan Lou Kai Yu Shuangxi Liu 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2021年第6期1561-1571,共11页
It is of broad interest to develop emerging photocatalysts with excellent light-harvesting capacity and high charge carrier separation efficiency for visible light photocatalytic hydrogen evolution reaction.However,ac... It is of broad interest to develop emerging photocatalysts with excellent light-harvesting capacity and high charge carrier separation efficiency for visible light photocatalytic hydrogen evolution reaction.However,achieving satisfying hydrogen evolution efficiency under noble metal-free conditions remains challenging.In this study,we demonstrate the fabrication of three-dimensionally ordered macroporous SrTiO_(3)decorated with Zn_(x)Cd_(1−x)S nanoparticles for hydrogen production under visible light irradiation(λ>420 nm).Synergetic enhancement of photocatalytic activity is achieved by the slow photon effect and improved separation efficiency of photogenerated charge carriers.The obtained composites could afford very high hydrogen production efficiencies up to 19.67 mmol·g^(−1)·h^(−1),with an apparent quantum efficiency of 35.9%at 420 nm,which is 4.2 and 23.9 times higher than those of pure Zn_(0.5)Cd_(0.5)S(4.67 mmol·g^(−1)·h^(−1))and CdS(0.82 mmol·g^(−1)·h^(−1)),respectively.In particular,under Pt-free conditions,an attractive hydrogen production rate(3.23 mmol·g^(−1)·h^(−1))was achieved,providing a low-cost and high-efficiency strategy to produce hydrogen from water splitting.Moreover,the composites showed excellent stability,and no obvious loss in activity was observed after five cycling tests. 展开更多
关键词 three-dimensionally ordered macroporous SrTiO_(3) Zn_(x)Cd_(1−x)S visible light hydrogen production promotion mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部