Plant diseases threaten global food security by reducing crop yield;thus,diagnosing plant diseases is critical to agricultural production.Artificial intelligence technologies gradually replace traditional plant diseas...Plant diseases threaten global food security by reducing crop yield;thus,diagnosing plant diseases is critical to agricultural production.Artificial intelligence technologies gradually replace traditional plant disease diagnosis methods due to their time-consuming,costly,inefficient,and subjective disadvantages.As a mainstream AI method,deep learning has substantially improved plant disease detection and diagnosis for precision agriculture.In the meantime,most of the existing plant disease diagnosis methods usually adopt a pre-trained deep learning model to support diagnosing diseased leaves.However,the commonly used pre-trained models are from the computer vision dataset,not the botany dataset,which barely provides the pre-trained models sufficient domain knowledge about plant disease.Furthermore,this pre-trained way makes the final diagnosis model more difficult to distinguish between different plant diseases and lowers the diagnostic precision.To address this issue,we propose a series of commonly used pre-trained models based on plant disease images to promote the performance of disease diagnosis.In addition,we have experimented with the plant disease pre-trained model on plant disease diagnosis tasks such as plant disease identification,plant disease detection,plant disease segmentation,and other subtasks.The extended experiments prove that the plant disease pre-trained model can achieve higher accuracy than the existing pre-trained model with less training time,thereby supporting the better diagnosis of plant diseases.In addition,our pre-trained models will be open-sourced at https://pd.samlab.cn/and Zenodo platform https://doi.org/10.5281/zenodo.7856293.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62162008,62006046,32125033,and 31960548)the National Key R&D Program of China(2020YFB1713300 and 2021YFD1700102)+5 种基金the Innovation and Entrepreneurship Project for Overseas Educated Talents in Guizhou Province(2022)-04the Guizhou Province Graduate Research Fund(YJSKYJJ(2021)060)the Guizhou Provincial Science and Technology Projects(ZK[2022]-108)the Guizhou University Cultivation Project(No.2021-55)the Natural Science Special Research Fund of Guizhou University(No.2021-24)the Program of Introducing Talents of Discipline to Universities of China(111 Program,D20023).
文摘Plant diseases threaten global food security by reducing crop yield;thus,diagnosing plant diseases is critical to agricultural production.Artificial intelligence technologies gradually replace traditional plant disease diagnosis methods due to their time-consuming,costly,inefficient,and subjective disadvantages.As a mainstream AI method,deep learning has substantially improved plant disease detection and diagnosis for precision agriculture.In the meantime,most of the existing plant disease diagnosis methods usually adopt a pre-trained deep learning model to support diagnosing diseased leaves.However,the commonly used pre-trained models are from the computer vision dataset,not the botany dataset,which barely provides the pre-trained models sufficient domain knowledge about plant disease.Furthermore,this pre-trained way makes the final diagnosis model more difficult to distinguish between different plant diseases and lowers the diagnostic precision.To address this issue,we propose a series of commonly used pre-trained models based on plant disease images to promote the performance of disease diagnosis.In addition,we have experimented with the plant disease pre-trained model on plant disease diagnosis tasks such as plant disease identification,plant disease detection,plant disease segmentation,and other subtasks.The extended experiments prove that the plant disease pre-trained model can achieve higher accuracy than the existing pre-trained model with less training time,thereby supporting the better diagnosis of plant diseases.In addition,our pre-trained models will be open-sourced at https://pd.samlab.cn/and Zenodo platform https://doi.org/10.5281/zenodo.7856293.