Formaldehyde(HCHO) is an important indoor pollutant.Catalytic oxidize low concentration HCHO is an effective way to eliminate indoor pollution.In this study,a series of Pt/TiO_(2) catalysts are prepared by impregnatio...Formaldehyde(HCHO) is an important indoor pollutant.Catalytic oxidize low concentration HCHO is an effective way to eliminate indoor pollution.In this study,a series of Pt/TiO_(2) catalysts are prepared by impregnation and reduced by NaBH_4.The effects of loading amount of Pt and cry stal type of TiO_(2) on the physical and chemical properties and the catalytic performance in HCHO oxidation reaction are investigated.The results show that the quantity of active site and the oxygen vacancy of catalysts increa sed with increasing Pt content,which is beneficial to promote the further performance of catalysts.Nevertheless,with the further rises of Pt content,the specific surface area further decreases,and the proportion of Pt^(2+) species on the catalyst surface which is significant to catalytic properties also decreases,causing catalytic performance decreases.Compared with the catalyst supporting on rutile,the Pt/α-TiO_(2) catalyst supporting on anatase has larger specific surface area,more Pt^(2+) phase and easier to form oxygen vacancy in the support,which cause better catalytic performance.The catalyst with Pt content of0.1 wt% and supported by anatase TiO_(2) has the best catalytic performance.The HCHO conversion efficiency reaches 98% and 100% at 50℃ and 100 ℃, and the stabilization time is longer than 140 h.展开更多
Five kinds of BZSM-5 molecular sieve with different Si/B ratio and a SiZSM-5 molecular sieve were prepared by hydrothermal synthesis method followed by acid exchange and pelletization.The samples were characterized by...Five kinds of BZSM-5 molecular sieve with different Si/B ratio and a SiZSM-5 molecular sieve were prepared by hydrothermal synthesis method followed by acid exchange and pelletization.The samples were characterized by XRD,SEM,FT-IR,ICP,low temperature N_(2) physical adsorption and desorption,NH3-TPD and Py-IR.The catalytic performance in the reaction of methanol to hydrocarbons was evaluated in the fixed bed reactor.Compared with SiZSM-5,the amount and strength of Bronsted(B)acid were enhanced by introducing skeleton boron and the activity of the catalyst was greatly improved.The characterization and evaluation results indicated that the BZSM-5 catalyst synthesized from the gel of SiO_(2)/B2 O320 with Si/B ratio 74.48 had modest acidity strength,acid amount of 0.18 mmol NH3·g^(-1) and large mesopore volume of 0.23 cm3·g^(-1).The B acid ratio was higher and the acid strength of BZSM-5 was weaker than that of AIZSM-5,which could inhibit the deep coke formation and increase the activity stability.B-2 had the best lifetime which could reach 672 h under the same evaluation reaction conditions,due to the best matching of moderate acidity and good diffusion properties.展开更多
In this article, transition metals of Cu, La and Zn were used as adjuvant to prepare modified HZSM-5 by impregnation method. The catalysts were characterized by XRD, BET, NH_3-TPD and Py-IR to reveal the microstructur...In this article, transition metals of Cu, La and Zn were used as adjuvant to prepare modified HZSM-5 by impregnation method. The catalysts were characterized by XRD, BET, NH_3-TPD and Py-IR to reveal the microstructure and acid property. The catalysis performances of methanol aromatization of catalysts were investigated in a fixed-bed reactor. The results show that the strength and distribution of acid center of these catalysts are significantly influenced by the species of transition metal. There are more mediate strong Lewis acid center in Zn modified HZSM-5 catalyst and therefore exhibits higher selectivity to aromatic, benzene, toluene and xylenes in the MTA reaction..展开更多
基金supported by the CAS (Chinese Academy of Sciences) Strategic Priority Research Program (XDA-21020500)。
文摘Formaldehyde(HCHO) is an important indoor pollutant.Catalytic oxidize low concentration HCHO is an effective way to eliminate indoor pollution.In this study,a series of Pt/TiO_(2) catalysts are prepared by impregnation and reduced by NaBH_4.The effects of loading amount of Pt and cry stal type of TiO_(2) on the physical and chemical properties and the catalytic performance in HCHO oxidation reaction are investigated.The results show that the quantity of active site and the oxygen vacancy of catalysts increa sed with increasing Pt content,which is beneficial to promote the further performance of catalysts.Nevertheless,with the further rises of Pt content,the specific surface area further decreases,and the proportion of Pt^(2+) species on the catalyst surface which is significant to catalytic properties also decreases,causing catalytic performance decreases.Compared with the catalyst supporting on rutile,the Pt/α-TiO_(2) catalyst supporting on anatase has larger specific surface area,more Pt^(2+) phase and easier to form oxygen vacancy in the support,which cause better catalytic performance.The catalyst with Pt content of0.1 wt% and supported by anatase TiO_(2) has the best catalytic performance.The HCHO conversion efficiency reaches 98% and 100% at 50℃ and 100 ℃, and the stabilization time is longer than 140 h.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(CAS)(XDA21020500)。
文摘Five kinds of BZSM-5 molecular sieve with different Si/B ratio and a SiZSM-5 molecular sieve were prepared by hydrothermal synthesis method followed by acid exchange and pelletization.The samples were characterized by XRD,SEM,FT-IR,ICP,low temperature N_(2) physical adsorption and desorption,NH3-TPD and Py-IR.The catalytic performance in the reaction of methanol to hydrocarbons was evaluated in the fixed bed reactor.Compared with SiZSM-5,the amount and strength of Bronsted(B)acid were enhanced by introducing skeleton boron and the activity of the catalyst was greatly improved.The characterization and evaluation results indicated that the BZSM-5 catalyst synthesized from the gel of SiO_(2)/B2 O320 with Si/B ratio 74.48 had modest acidity strength,acid amount of 0.18 mmol NH3·g^(-1) and large mesopore volume of 0.23 cm3·g^(-1).The B acid ratio was higher and the acid strength of BZSM-5 was weaker than that of AIZSM-5,which could inhibit the deep coke formation and increase the activity stability.B-2 had the best lifetime which could reach 672 h under the same evaluation reaction conditions,due to the best matching of moderate acidity and good diffusion properties.
基金Supported by the Key Technology and Demonstration on Low Rank Coal Clean,Efficient and Cascade Application ProjectSynthesis Technology of Coal-based Bulk Chemical and FuelResearch on Key Technology of Methanol to Aromatics(MTA)(XDA07070800)
文摘In this article, transition metals of Cu, La and Zn were used as adjuvant to prepare modified HZSM-5 by impregnation method. The catalysts were characterized by XRD, BET, NH_3-TPD and Py-IR to reveal the microstructure and acid property. The catalysis performances of methanol aromatization of catalysts were investigated in a fixed-bed reactor. The results show that the strength and distribution of acid center of these catalysts are significantly influenced by the species of transition metal. There are more mediate strong Lewis acid center in Zn modified HZSM-5 catalyst and therefore exhibits higher selectivity to aromatic, benzene, toluene and xylenes in the MTA reaction..