The experiment involves creating a sound wave that propagates down a pipe with 8 transducers attached at equally spaced intervals of 0.01016 m. The numerical method—the Cross Correlation Method, used to solve for the...The experiment involves creating a sound wave that propagates down a pipe with 8 transducers attached at equally spaced intervals of 0.01016 m. The numerical method—the Cross Correlation Method, used to solve for the phase component, creates a high correlation value, but the speed of sound varies immensely. The method involves a Fast Fourier Transform (FFT) of the collected data, which is used to find the phase of the sound wave, and the slope of the position versus time graph, which is used to calculate the speed of sound. This high correlation value shows that the data are correct, but the numerical method for analyzing the data is incorrect.展开更多
文摘The experiment involves creating a sound wave that propagates down a pipe with 8 transducers attached at equally spaced intervals of 0.01016 m. The numerical method—the Cross Correlation Method, used to solve for the phase component, creates a high correlation value, but the speed of sound varies immensely. The method involves a Fast Fourier Transform (FFT) of the collected data, which is used to find the phase of the sound wave, and the slope of the position versus time graph, which is used to calculate the speed of sound. This high correlation value shows that the data are correct, but the numerical method for analyzing the data is incorrect.