期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
伍家岗长江大桥纵肋与顶板细节疲劳性能研究 被引量:2
1
作者 胡可宁 张后登 +1 位作者 吴繁 周志兴 《钢结构(中英文)》 2021年第10期34-41,共8页
纵肋与顶板构造细节疲劳开裂是正交异性钢桥面板结构的典型疲劳病害,疲劳裂纹一旦裂穿顶板将引发铺装层破损和渗水锈蚀等次生病害,严重危害钢箱梁的耐久性和安全性。由于传统的焊接技术只能在闭口纵肋外侧单面施焊,使得纵肋与顶板传统... 纵肋与顶板构造细节疲劳开裂是正交异性钢桥面板结构的典型疲劳病害,疲劳裂纹一旦裂穿顶板将引发铺装层破损和渗水锈蚀等次生病害,严重危害钢箱梁的耐久性和安全性。由于传统的焊接技术只能在闭口纵肋外侧单面施焊,使得纵肋与顶板传统单面焊构造细节焊根位置存在天然的"类裂纹"构造,导致其焊根位置疲劳开裂问题突出。为解决纵肋与顶板传统单面焊构造细节焊根位置疲劳开裂难题,依托伍家岗长江大桥项目,通过引入纵肋内焊技术,发展纵肋与顶板新型双面焊构造细节,以提升其疲劳性能。以纵肋与顶板构造细节为研究对象,基于等效结构应力法对其疲劳性能进行了系统研究,首先确定了纵肋与顶板传统单面焊构造细节和新型双面焊构造细节各疲劳开裂模式的影响面,在考虑了轮载横向分布概率的基础上确定了两种构造细节的主导疲劳开裂模式,并对其疲劳寿命进行了评估。研究结果表明:纵肋与顶板传统单面焊构造细节和纵肋与顶板新型双面焊构造细节中各疲劳开裂模式的纵向影响线长度主要在构造细节相邻的两个横隔板之间;在轮载的纵向移动作用下,纵肋与顶板传统单面焊构造细节顶板焊根开裂模式和顶板焊趾开裂模式均以承受拉-压循环应力为主,轮载作用于传统单面焊构造细节的正上方(e=-150 mm)为其最不利横向加载位置;纵肋与顶板传统单面焊构造细节的主导疲劳开裂模式为顶板焊根开裂,在标准疲劳车作用下其最大等效结构应力幅值为70.4 MPa;在轮载的纵向移动作用下,纵肋与顶板新型双面焊构造细节的顶板内侧焊趾开裂模式和顶板外侧焊趾开裂模式均以承受拉-压循环应力为主,其最不利横向加载位置和纵肋与顶板传统单面焊构造细节相同,为轮载作用于构造细节的正上方(e=-150 mm);纵肋与顶板新型双面焊构造细节的主导疲劳开裂模式为顶板外侧焊趾开裂,其最大等效结构应力幅值为63.2 MPa;新型双面焊的引入使纵肋与顶板构造细节的主导疲劳开裂模式由传统单面焊构造细节的顶板焊根开裂迁移到新型双面焊构造细节的顶板外侧焊趾开裂,相较于传统单面焊构造细节,新型双面焊构造细节的疲劳寿命提升约42.4%。新型双面焊的引入可有效提升纵肋与顶板细节的疲劳性能。 展开更多
关键词 桥梁工程 纵肋与顶板构造细节 双面焊 等效结构应力法 疲劳性能
原文传递
Automatic sub-pixel coastline extraction based on spectral mixture analysis using EO-1 Hyperion data
2
作者 Zhonghua HONG Xuesu LI +4 位作者 Yanling HAN Yun ZHANG Jing WANG Ruyan ZHOU kening hu 《Frontiers of Earth Science》 SCIE CAS CSCD 2019年第3期478-494,共17页
Many megacities (such as Shanghai) are located in coastal areas, therefore, coastline monitoring is critical for urban security and urban development sustainability. A shoreline is defined as the intersection between ... Many megacities (such as Shanghai) are located in coastal areas, therefore, coastline monitoring is critical for urban security and urban development sustainability. A shoreline is defined as the intersection between coastal land and a water surface and features seawater edge movements as tides rise and fall. Remote sensing techniques have increasingly been used for coastline extraction;however, traditional hard classification methods are performed only at the pixel-level and extracting subpixel accuracy using soft classification methods is both challenging and time consuming due to the complex features in coastal regions. This paper presents an automatic sub-pixel coastline extraction method (ASPCE) from high-spectral satellite imaging that performs coastline extraction based on spectral mixture analysis and, thus, achieves higher accuracy. The ASPCE method consists of three main components: 1) A Water-Vegetation-Impervious-Soil (W-V-I-S) model is first presented to detect mixed W-V-I-S pixels and determine the endmember spectra in coastal regions;2) The linear spectral mixture unmixing technique based on Fully Constrained Least Squares (FCLS) is applied to the mixed W-V-I-S pixels to estimate seawater abundance;and 3) The spatial attraction model is used to extract the coastline. We tested this new method using EO-1 images from three coastal regions in China: the South China Sea, the East China Sea, and the Bohai Sea. The results showed that the method is accurate and robust. Root mean square error (RMSE) was utilized to evaluate the accuracy by calculating the distance differences between the extracted coastline and the digitized coastline. The classifier’s performance was compared with that of the Multiple Endmember Spectral Mixture Analysis (MESMA), Mixture Tuned Matched Filtering (MTMF), Sequential Maximum Angle Convex Cone (SMACC), Constrained Energy Minimization (CEM), and one classical Normalized Difference Water Index (NDWI). The results from the three test sites indicated that the proposed ASPCE method extracted coastlines more efficiently than did the compared methods, and its coastline extraction accuracy corresponded closely to the digitized coastline, with 0.39 pixels, 0.40 pixels, and 0.35 pixels in the three test regions, showing that the ASPCE method achieves an accuracy below 12.0 m (0.40 pixels). Moreover, in the quantitative accuracy assessment for the three test sites, the ASPCE method shows the best performance in coastline extraction, achieving a 0.35 pixel-level at the Bohai Sea, China test site. Therefore, the proposed ASPCE method can extract coastline more accurately than can the hard classification methods or other spectral unmixing methods. 展开更多
关键词 COASTLINE fully CONSTRAINED least SQUARES spatial ATTRACTION algorithm URBAN development EO-1 data
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部