The authors analyze continuity equations with Stratonovich stochasticity,■ρ+divh[ρo(u(t,x)+∑_(i=1)^(N)a_(i)(x)w_(i)(t))]=0defined on a smooth closed Riemannian manifold M with metric h.The velocity field u is pert...The authors analyze continuity equations with Stratonovich stochasticity,■ρ+divh[ρo(u(t,x)+∑_(i=1)^(N)a_(i)(x)w_(i)(t))]=0defined on a smooth closed Riemannian manifold M with metric h.The velocity field u is perturbed by Gaussian noise terms Wi(t),:WN(t)driven by smooth spatially dependent vector fields a1(x),...,aN(x)on M.The velocity u belongs to L_(t)^(1)W_(x)^(1,2)with divh u bounded in Lf,for p>d+2,where d is the dimension of M(they do not assume div_(h) u∈L_(t,x)^(∞)).For carefully chosen noise vector fields ai(and the number N of them),they show that the initial-value problem is well-posed in the class of weak L^(2) solutions,although the problem can be ill-posed in the deterministic case because of concentration effects.The proof of this“regularization by noise”result is based on a L^(2) estimate,which is obtained by a duality method,and a weak compactness argument.展开更多
基金supported by the Research Council of Norway through the projects Stochastic Conservation Laws (No. 250674)(in part) Waves and Nonlinear Phenomena (No. 250070)
文摘The authors analyze continuity equations with Stratonovich stochasticity,■ρ+divh[ρo(u(t,x)+∑_(i=1)^(N)a_(i)(x)w_(i)(t))]=0defined on a smooth closed Riemannian manifold M with metric h.The velocity field u is perturbed by Gaussian noise terms Wi(t),:WN(t)driven by smooth spatially dependent vector fields a1(x),...,aN(x)on M.The velocity u belongs to L_(t)^(1)W_(x)^(1,2)with divh u bounded in Lf,for p>d+2,where d is the dimension of M(they do not assume div_(h) u∈L_(t,x)^(∞)).For carefully chosen noise vector fields ai(and the number N of them),they show that the initial-value problem is well-posed in the class of weak L^(2) solutions,although the problem can be ill-posed in the deterministic case because of concentration effects.The proof of this“regularization by noise”result is based on a L^(2) estimate,which is obtained by a duality method,and a weak compactness argument.