期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Electrocatalytic generation of reactive species and implications in microbial inactivation
1
作者 Forrest Nichols kenneth I.Ozoemena Shaowei Chen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第6期1399-1416,共18页
Controlling microbial proliferation in water systems,including wastewater,recreational water,and drinking water,is essential to societal health.Microbial inactivation through electrochemically generated reactive speci... Controlling microbial proliferation in water systems,including wastewater,recreational water,and drinking water,is essential to societal health.Microbial inactivation through electrochemically generated reactive species(RS)mediated pathways provides an effective route toward this microbial control.Herein we provide an overview of recent progress toward electrocatalytic generation of RS and their application in water disinfection,with a focus on the selective production of RS,the microorganism interactions with RS(including both RS mechanisms of action and innate microorganism responses to RS),and practical implementation of electrochemically generated RS for microbial inactivation.The article is concluded with a perspective where the challenges and opportunities of RS‐based electrochemical disinfection of water are highlighted,along with possible future research directions. 展开更多
关键词 ELECTROCATALYSIS Reactive species MICROORGANISM INACTIVATION Water electrodisinfection
下载PDF
NiFeRuO_(x)nanosheets on Ni foam as an electrocatalyst for efficient overall alkaline seawater splitting
2
作者 Yu Liu Lin Chen +5 位作者 Yong Wang Yuan Dong Liang Zhou Susana ICórdoba de Torresi kenneth iozoemena Xiao-Yu Yang 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第11期1698-1706,共9页
The electrocatalyst NiFeRuO_(x)/NF,comprised of NiFeRuO_(x)nanosheets grown on Ni foam,was synthesized using a hydrothermal process followed by thermal annealing.NiFeRuO_(x)/NF displays high electrocatalytic activity ... The electrocatalyst NiFeRuO_(x)/NF,comprised of NiFeRuO_(x)nanosheets grown on Ni foam,was synthesized using a hydrothermal process followed by thermal annealing.NiFeRuO_(x)/NF displays high electrocatalytic activity and stability for overall alkaline seawater splitting:98 mV@10 mA∙cm^(−2)in hydrogen evolution reaction,318 mV@50 mA∙cm^(−2)in oxygen evolution reaction,and a cell voltage of 1.53 V@10 mA∙cm^(−2),as well as 20 h of durability.A solar-driven system containing such a bifunctional NiFeRuO_(x)/NF has an almost 100%Faradaic efficiency.The NiFeRuO_(x)coating around Ni foam is an anti-corrosion layer and also a critical factor for enhancement of bifunctional performances. 展开更多
关键词 NiFeRuO_(x)nanosheets Ni foam ELECTROCATALYSIS overall seawater splitting solar-driven system
原文传递
Stoichiometry design in hierarchical CoNiFe phosphide for highly efficient water oxidation
3
作者 Jiangbo Chen Jie Ying +4 位作者 Yuxuan Xiao Yuan Dong kenneth iozoemena Silvia Lenaerts Xiaoyu Yang 《Science China Materials》 SCIE EI CAS CSCD 2022年第10期2685-2693,共9页
Rational composition design of trimetallic phosphide catalysts is of significant importance for enhanced surface reaction and efficient catalytic performance.Herein,hierarchical Co_(x)Ni_(y)Fe_(z)P with precise contro... Rational composition design of trimetallic phosphide catalysts is of significant importance for enhanced surface reaction and efficient catalytic performance.Herein,hierarchical Co_(x)Ni_(y)Fe_(z)P with precise control of stoichiometric metallic elements(x:y:z=(1-10):(1-10):1)has been synthesized,and Co_(1.3)Ni_(0.5)Fe_(0.2)P,as the most optimal composition,exhibits remarkable catalytic activity(η=320 mV at 10 mA cm^(−2))and long-term stability(ignorable decrease after 10 h continuous test at the current density of 10 mA cm^(−2))toward oxygen evolution reaction(OER).It is found that the surface P in Co_(1.3)Ni_(0.5)Fe_(0.2)P was replaced by O under the OER process.The density function theory calculations before and after long-term stability tests suggest the clear increasing of the density of states near the Fermi level of Co_(1.3)Ni_(0.5)Fe_(0.2)P/Co_(1.3)Ni_(0.5)Fe_(0.2)O,which could enhance the OH−adsorption of our electrocatalysts and the corresponding OER performance. 展开更多
关键词 trimetallic phosphides hierarchical structures stoichiometry design charge transfer oxygen evolution reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部