Using continuously operating Global Positioning Stations in the Pacific Northwest of the United States, over 100 station-station baseline length changes were determined along seven West-East transects, two North-South...Using continuously operating Global Positioning Stations in the Pacific Northwest of the United States, over 100 station-station baseline length changes were determined along seven West-East transects, two North-South transects and in three localized areas to determine both the average annual strains over the past several years, and the variation in strain over the central Cascadia convergent margin. The North-South transects (composed of multiple baselines) show shortening. Along West-East transects some baselines show shortening and others extension. The direction of the principle strains calculated for two areas 100 km from the deformation front are close to per-pendicular to the deformation front. The North-South strains are 10?8 a?1, which is an order-of-magnitude less than the West-East strains (10?7 a?1). Along several West-East transects, the magnitude of the strain increases away from the deformation front. All West-East transects showed a change in strain 250 km inland from deformation front.展开更多
The purpose of this paper is to compare the strain energy released due to elastic rebound of the crust from the tragic 2011 9.0 MwTōhoku earthquake in Japan with the observed radiated seismic energy. The strain energ...The purpose of this paper is to compare the strain energy released due to elastic rebound of the crust from the tragic 2011 9.0 MwTōhoku earthquake in Japan with the observed radiated seismic energy. The strain energy was calculated by analyzing coseismic displacements of 1024 GPS stations of the Japanese GEONET network. The value of energy released from the analysis is 1.75 × 1017J, which is of the same order of magnitude as the USGS-observed radiated seismic energy of 1.9 × 1017Nm (J). The strain energy method is independent of seismic methods for determining the energy released during a large earthquake. The analysis shows that although the energy release is concentrated in the epicentral region, about 12% of the total energy was released throughout the Japanese islands at distances greater than 500 km west of the epicenter. Our results also show that outside the epicentral region, the strainenergy was concentrated along known tectonic zones throughout Japan.展开更多
In this article, a case is made for very-large or primary seismogenic structures in convergent margins, based on anomalous large earthquake magnitudes (Mw 8 - 9) relative to rupture lengths. Out of 56,293 earthquakes ...In this article, a case is made for very-large or primary seismogenic structures in convergent margins, based on anomalous large earthquake magnitudes (Mw 8 - 9) relative to rupture lengths. Out of 56,293 earthquakes (magnitudes ≥ 5) cataloged worldwide, the 10 largest events in transform, divergent, and interior settings average magnitudes of 7.3 - 7.6. But in convergent margins, the average magnitude of the 10 largest events is 8.5, roughly 32 times more energy than the other neotectonic settings. The large anomalous magnitudes of energy release in convergent margins are attributed to the transfer of inter-plate stress to the upper-plate, where convergent elastic strain is accumulated during interseismic intervals. The large volumes of rock that accumulate the elastic strain in the upper-plates of convergent zones are defined here as primary seismogenic structures. Several datasets of 1) modern upper-plate convergent strain, 2) historical earthquakes, 3) modern upper-plate vertical displacements, and 4) recent inter-plate events of Episodic Tremor and Slip (ETS) are compared to establish the extent of the primary seismogenic structure in the Cascadia convergent zone. The across-margin extents of 1) significant convergent strain, 2) margin-parallel bands of vertical displacement, 3) historical seismicity and 4) ETS events, representing inter-plate coupling and shear stress transfer to strain accumulation in the upper-plate, are used to map the width of the primary seismogenic structure. The across-margin width of the primary seismogenic structure in the central Cascadia margin ranges from 300 km in the south-central margin to 450 km in the north-central margin, as mapped landward from the buried trench. A broad source region of coseismic energy release in the Cascadia primary seismogenic structure (300 - 450 km width) could yield stronger shaking in interior metropolitan centers from a future major rupture of the mega-thrust than has been modeled from a narrow “locked” zone located offshore under the outer continental shelf. Despite low dip angle and associated wide inter-plate coupling, the Cascadia margin likely serves as an example of inter-plate shear stress transfer to elastic strain accumulation in the upper-plate of some other well-coupled convergent margins worldwide.展开更多
Modern horizontal strain (2006-2016) measured along 56 new and 108 previously published GPS station baselines are used to establish the length (800 km) and width (300 - 400 km) of the central Cascadia convergent margi...Modern horizontal strain (2006-2016) measured along 56 new and 108 previously published GPS station baselines are used to establish the length (800 km) and width (300 - 400 km) of the central Cascadia convergent margin seismogenic structure. Across-margin (west-east) annual rates of shortening range from 10﹣9 a﹣1 at the eastern (landward) limit of the central Cascadia seismogenic structure to 10﹣7 a﹣1 along the western onshore portion of the interplate zone. Relatively high shortening strain rates (10﹣8 a﹣1 to 10﹣7 a﹣1) are also measured in western transects from the northern (Explorer plate) and southern (Gorda plate) segments of the convergent margin, demonstrating that the full length of the margin (1300 km length) is currently capable of sustaining and/or initiating a major great earthquake. Vertical GPS velocities are averaged over the last decade at 321 stations to map patterns of uplift (0 - 5 mm yr﹣1) and subsidence (0 - 9 mm yr﹣1) relative to the study area mean. Along-margin belts of relative uplift and subsidence, respectively, are approximately associated with Coast Ranges and the Cascade volcanic arc. However, the vertical velocity data are locally heterogeneous, demonstrating patchy “anomalies” within the larger along-margin belts. A large coastal subsidence anomaly occurs in southwest Washington where the modern short-term trend is reversed from the long-term (~200 yr) tidal marsh record of coastal uplift since the last co-seismic subsidence event (AD1700). The modern vertical displacements represent a late stage of the current inter-seismic interval. If the horizontal strain is considered largely or fully elastic, extrapolating the modern strain rates over the last 100 years show the accumulated strains would be similar in magnitude to the observed co-seismic strains resulting from the Tōhoku, Japan, Mw 9.0 earthquake in 2011. We believe that the central Cascadia seismogenic structure has accumulated sufficient elastic strain energy, during the last 300 years, to yield a Mw 9.0 earthquake from a rupture of at least one-half (400 km) of its length.展开更多
文摘Using continuously operating Global Positioning Stations in the Pacific Northwest of the United States, over 100 station-station baseline length changes were determined along seven West-East transects, two North-South transects and in three localized areas to determine both the average annual strains over the past several years, and the variation in strain over the central Cascadia convergent margin. The North-South transects (composed of multiple baselines) show shortening. Along West-East transects some baselines show shortening and others extension. The direction of the principle strains calculated for two areas 100 km from the deformation front are close to per-pendicular to the deformation front. The North-South strains are 10?8 a?1, which is an order-of-magnitude less than the West-East strains (10?7 a?1). Along several West-East transects, the magnitude of the strain increases away from the deformation front. All West-East transects showed a change in strain 250 km inland from deformation front.
文摘The purpose of this paper is to compare the strain energy released due to elastic rebound of the crust from the tragic 2011 9.0 MwTōhoku earthquake in Japan with the observed radiated seismic energy. The strain energy was calculated by analyzing coseismic displacements of 1024 GPS stations of the Japanese GEONET network. The value of energy released from the analysis is 1.75 × 1017J, which is of the same order of magnitude as the USGS-observed radiated seismic energy of 1.9 × 1017Nm (J). The strain energy method is independent of seismic methods for determining the energy released during a large earthquake. The analysis shows that although the energy release is concentrated in the epicentral region, about 12% of the total energy was released throughout the Japanese islands at distances greater than 500 km west of the epicenter. Our results also show that outside the epicentral region, the strainenergy was concentrated along known tectonic zones throughout Japan.
文摘In this article, a case is made for very-large or primary seismogenic structures in convergent margins, based on anomalous large earthquake magnitudes (Mw 8 - 9) relative to rupture lengths. Out of 56,293 earthquakes (magnitudes ≥ 5) cataloged worldwide, the 10 largest events in transform, divergent, and interior settings average magnitudes of 7.3 - 7.6. But in convergent margins, the average magnitude of the 10 largest events is 8.5, roughly 32 times more energy than the other neotectonic settings. The large anomalous magnitudes of energy release in convergent margins are attributed to the transfer of inter-plate stress to the upper-plate, where convergent elastic strain is accumulated during interseismic intervals. The large volumes of rock that accumulate the elastic strain in the upper-plates of convergent zones are defined here as primary seismogenic structures. Several datasets of 1) modern upper-plate convergent strain, 2) historical earthquakes, 3) modern upper-plate vertical displacements, and 4) recent inter-plate events of Episodic Tremor and Slip (ETS) are compared to establish the extent of the primary seismogenic structure in the Cascadia convergent zone. The across-margin extents of 1) significant convergent strain, 2) margin-parallel bands of vertical displacement, 3) historical seismicity and 4) ETS events, representing inter-plate coupling and shear stress transfer to strain accumulation in the upper-plate, are used to map the width of the primary seismogenic structure. The across-margin width of the primary seismogenic structure in the central Cascadia margin ranges from 300 km in the south-central margin to 450 km in the north-central margin, as mapped landward from the buried trench. A broad source region of coseismic energy release in the Cascadia primary seismogenic structure (300 - 450 km width) could yield stronger shaking in interior metropolitan centers from a future major rupture of the mega-thrust than has been modeled from a narrow “locked” zone located offshore under the outer continental shelf. Despite low dip angle and associated wide inter-plate coupling, the Cascadia margin likely serves as an example of inter-plate shear stress transfer to elastic strain accumulation in the upper-plate of some other well-coupled convergent margins worldwide.
文摘Modern horizontal strain (2006-2016) measured along 56 new and 108 previously published GPS station baselines are used to establish the length (800 km) and width (300 - 400 km) of the central Cascadia convergent margin seismogenic structure. Across-margin (west-east) annual rates of shortening range from 10﹣9 a﹣1 at the eastern (landward) limit of the central Cascadia seismogenic structure to 10﹣7 a﹣1 along the western onshore portion of the interplate zone. Relatively high shortening strain rates (10﹣8 a﹣1 to 10﹣7 a﹣1) are also measured in western transects from the northern (Explorer plate) and southern (Gorda plate) segments of the convergent margin, demonstrating that the full length of the margin (1300 km length) is currently capable of sustaining and/or initiating a major great earthquake. Vertical GPS velocities are averaged over the last decade at 321 stations to map patterns of uplift (0 - 5 mm yr﹣1) and subsidence (0 - 9 mm yr﹣1) relative to the study area mean. Along-margin belts of relative uplift and subsidence, respectively, are approximately associated with Coast Ranges and the Cascade volcanic arc. However, the vertical velocity data are locally heterogeneous, demonstrating patchy “anomalies” within the larger along-margin belts. A large coastal subsidence anomaly occurs in southwest Washington where the modern short-term trend is reversed from the long-term (~200 yr) tidal marsh record of coastal uplift since the last co-seismic subsidence event (AD1700). The modern vertical displacements represent a late stage of the current inter-seismic interval. If the horizontal strain is considered largely or fully elastic, extrapolating the modern strain rates over the last 100 years show the accumulated strains would be similar in magnitude to the observed co-seismic strains resulting from the Tōhoku, Japan, Mw 9.0 earthquake in 2011. We believe that the central Cascadia seismogenic structure has accumulated sufficient elastic strain energy, during the last 300 years, to yield a Mw 9.0 earthquake from a rupture of at least one-half (400 km) of its length.