The fabrication of sintered diamond/metal composites bodies composed of diamond filler with the average particle size of 15 μm to 30 μm and metal binder (Ag-Cu-Ti system brazing) was attempted by powder metallurgica...The fabrication of sintered diamond/metal composites bodies composed of diamond filler with the average particle size of 15 μm to 30 μm and metal binder (Ag-Cu-Ti system brazing) was attempted by powder metallurgical sintering process at 700℃ to 1000?C in vacuum atmosphere. As a result, dense bulks of sintered diamond/metal composites were obtained by this powder metallurgical sintering process. The increase of sintering temperatures from 750℃ to 950℃ and of pressure enhanced the density of sintered diamond/metal composites during the hot-pressing in vacuum. All bulks prepared at the temperatures of 750?C to 950℃ were composed of diamond phase and Ag-Cu-Ti system brazing without any other phase for sintered bulks for diamond/metal composites. Furthermore, some properties were evaluated for sintered diamond/metal composites.展开更多
文摘The fabrication of sintered diamond/metal composites bodies composed of diamond filler with the average particle size of 15 μm to 30 μm and metal binder (Ag-Cu-Ti system brazing) was attempted by powder metallurgical sintering process at 700℃ to 1000?C in vacuum atmosphere. As a result, dense bulks of sintered diamond/metal composites were obtained by this powder metallurgical sintering process. The increase of sintering temperatures from 750℃ to 950℃ and of pressure enhanced the density of sintered diamond/metal composites during the hot-pressing in vacuum. All bulks prepared at the temperatures of 750?C to 950℃ were composed of diamond phase and Ag-Cu-Ti system brazing without any other phase for sintered bulks for diamond/metal composites. Furthermore, some properties were evaluated for sintered diamond/metal composites.