Based on exact Green strain of spatial curved beam, the relation for plane curved beam with varying curvature is derived nonlinear strain-displacement Instead of using the previous straight beam elements, curved beam ...Based on exact Green strain of spatial curved beam, the relation for plane curved beam with varying curvature is derived nonlinear strain-displacement Instead of using the previous straight beam elements, curved beam elements are used to approximate the curved beam with varying curvature. Based on virtual work principle, rigid-flexible coupling dynamic equations are obtained. Physical experiments were carried out to capture the large overall motion and the strain of curved beam to verify the present rigid-flexible coupling formulation for curved beam based on curved beam element. Numerical results obtained from simulations were compared with those results from the physical experiments. In order to illustrate the effectiveness of the curved beam element methodology, the simulation results of present curved beam elements are compared with those obtained by previous straight beam elements. The dynamic behavior of a slider-crank mechanism with an initially curved elastic connecting rod is investigated. The advantage of employing generalized-or method is pointed out and the special nonlinear dynamic characteristics of the curved beam are concluded.展开更多
基金supported by the Research Fund for the Doctoral Program of Higher Education of China(20100073110007)the Key Project of National Natural Science Foundation of China (11132007)
文摘Based on exact Green strain of spatial curved beam, the relation for plane curved beam with varying curvature is derived nonlinear strain-displacement Instead of using the previous straight beam elements, curved beam elements are used to approximate the curved beam with varying curvature. Based on virtual work principle, rigid-flexible coupling dynamic equations are obtained. Physical experiments were carried out to capture the large overall motion and the strain of curved beam to verify the present rigid-flexible coupling formulation for curved beam based on curved beam element. Numerical results obtained from simulations were compared with those results from the physical experiments. In order to illustrate the effectiveness of the curved beam element methodology, the simulation results of present curved beam elements are compared with those obtained by previous straight beam elements. The dynamic behavior of a slider-crank mechanism with an initially curved elastic connecting rod is investigated. The advantage of employing generalized-or method is pointed out and the special nonlinear dynamic characteristics of the curved beam are concluded.