期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Optical Properties and Source Analysis of Aerosols over a Desert Area in Dunhuang,Northwest China 被引量:2
1
作者 Yongjing MA Jinyuan XIN +6 位作者 Yining MA Lingbin KONG kequan zhang Wenyu zhang Yuesi WANG Xiuqin WANG Yongfeng ZHU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第8期1017-1026,共10页
Aerosol observational data for 2012 obtained from Dunhuang Station of CARE-China(Campaign on Atmospheric Aerosol Research Network of China) were analyzed to achieve in-depth knowledge of aerosol optical properties o... Aerosol observational data for 2012 obtained from Dunhuang Station of CARE-China(Campaign on Atmospheric Aerosol Research Network of China) were analyzed to achieve in-depth knowledge of aerosol optical properties over Dunhuang region. The results showed that the annual average aerosol optical depth(AOD) at 500 nm was 0.32 ± 0.06, and the ?ngstr?m exponent(α) was 0.73 ± 0.27. Aerosol optical properties revealed significant seasonal characteristics. Frequent sandstorms in MAM(March–April–May) resulted in the seasonal maximum AOD, 0.41 ± 0.04, and a relatively smaller αvalue, 0.44 ± 0.04. The tourism seasons, JJA(June–July–August) and SON(September–October–November) coincide with serious emissions of small anthropogenic aerosols. While in DJF(December–January–February), the composition of the atmosphere was a mixture of dust particles and polluted aerosols released by domestic heating; the average AOD and αwere 0.29 ± 0.02 and 0.66 ± 0.17, respectively. Different air masses exhibited different degrees of influence on the aerosol concentration over Dunhuang in different seasons. During MAM, ranges of AOD(0.11–1.18) and α(0.06–0.82) were the largest under the dust influence of northwest-short-distance air mass in the four trajectories. Urban aerosols transported by northwest-short-distance air mass accounted for a very large proportion in JJA and the mixed aerosols observed in SON were mainly conveyed by air masses from the west. In DJF, the similar ranges of AOD and α under the three air mass demonstrated the analogous diffusion effects on regional pollutants over Dunhuang. 展开更多
关键词 Dunhuang AOD ?ngstr?m exponent dust aerosol anthropogenic aerosols
下载PDF
Evaluating the Ozone Valley over the Tibetan Plateau in CMIP6 Models 被引量:2
2
作者 kequan zhang Jiakang DUAN +3 位作者 Siyi ZHAO Jiankai zhang James KEEBLE Hongwen LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第7期1167-1183,共17页
Total column ozone(TCO)over the Tibetan Plateau(TP)is lower than that over other regions at the same latitude,particularly in summer.This feature is known as the“TP ozone valley”.This study evaluates long-term chang... Total column ozone(TCO)over the Tibetan Plateau(TP)is lower than that over other regions at the same latitude,particularly in summer.This feature is known as the“TP ozone valley”.This study evaluates long-term changes in TCO and the ozone valley over the TP from 1984 to 2100 using Coupled Model Intercomparison Project Phase 6(CMIP6).The TP ozone valley consists of two low centers,one is located in the upper troposphere and lower stratosphere(UTLS),and the other is in the middle and upper stratosphere.Overall,the CMIP6 models simulate the low ozone center in the UTLS well and capture the spatial characteristics and seasonal cycle of the TP ozone valley,with spatial correlation coefficients between the modeled TCO and the Multi Sensor Reanalysis version 2(MSR2)TCO observations greater than 0.8 for all CMIP6 models.Further analysis reveals that models which use fully coupled and online stratospheric chemistry schemes simulate the anticorrelation between the 150 hPa geopotential height and zonal anomaly of TCO over the TP better than models without interactive chemistry schemes.This suggests that coupled chemical-radiative-dynamical processes play a key role in the simulation of the TP ozone valley.Most CMIP6 models underestimate the low center in the middle and upper stratosphere when compared with the Microwave Limb Sounder(MLS)observations.However,the bias in the middle and upper stratospheric ozone simulations has a marginal effect on the simulation of the TP ozone valley.Most CMIP6 models predict the TP ozone valley in summer will deepen in the future. 展开更多
关键词 Tibetan Plateau stratospheric ozone ozone valley CMIP6
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部