Electrochemical nitrate reduction reaction(NO_(3)−RR)is an ideal route to produce ammonia(NH_(3))under ambient conditions.Although a markedly improved NH3 production rate has been achieved on the NO_(3)−RR compared wi...Electrochemical nitrate reduction reaction(NO_(3)−RR)is an ideal route to produce ammonia(NH_(3))under ambient conditions.Although a markedly improved NH3 production rate has been achieved on the NO_(3)−RR compared with the nitrogen reduction reaction(NRR),the NH_(3) production rate of NO_(3)−RR is still well below the industrial Haber-Bosch route due to the lack of robust electrocatalysts for yielding high current densitieswith concurrently good suppression of hydrogen evolution reaction(HER).Herein,we describe an in situ electrochemical strategy for the synthesis of hollow carbon-coated Cu nanoparticles(NPs)(HSCu@C)with abundant grain boundaries(HSCu-AGB@C)for highly efficient NO_(3)−RR in both alkaline and neutral media.Impressively,in alkaline media,the HSCu-AGB@C can achieve a maximum NH3 Faradaic efficiency of 94.2% with an ultrahigh NH_(3) rate of 487.8 mmol g^(−1) cat h^(−1) at−0.2 V versus a reversible hydrogen electrode,more than 2.4-fold of the rate obtained in the Haber-Bosch.Both theoretic computations and experimental results uncover that the grain boundaries play the key to improve the NO_(3)−RR performance.Herein,the industrial-scale NH_(3) production ratemay open exciting opportunities for the practical electrosynthesis NH_(3) under ambient conditions.展开更多
基金the National Natural Science Foundation(NNSF)of China(nos.21975162 and 51902208)Shenzhen Government’s Plan of Science and Technology(nos.JCYJ20200109105803806 and JCYJ20190808142219049).
文摘Electrochemical nitrate reduction reaction(NO_(3)−RR)is an ideal route to produce ammonia(NH_(3))under ambient conditions.Although a markedly improved NH3 production rate has been achieved on the NO_(3)−RR compared with the nitrogen reduction reaction(NRR),the NH_(3) production rate of NO_(3)−RR is still well below the industrial Haber-Bosch route due to the lack of robust electrocatalysts for yielding high current densitieswith concurrently good suppression of hydrogen evolution reaction(HER).Herein,we describe an in situ electrochemical strategy for the synthesis of hollow carbon-coated Cu nanoparticles(NPs)(HSCu@C)with abundant grain boundaries(HSCu-AGB@C)for highly efficient NO_(3)−RR in both alkaline and neutral media.Impressively,in alkaline media,the HSCu-AGB@C can achieve a maximum NH3 Faradaic efficiency of 94.2% with an ultrahigh NH_(3) rate of 487.8 mmol g^(−1) cat h^(−1) at−0.2 V versus a reversible hydrogen electrode,more than 2.4-fold of the rate obtained in the Haber-Bosch.Both theoretic computations and experimental results uncover that the grain boundaries play the key to improve the NO_(3)−RR performance.Herein,the industrial-scale NH_(3) production ratemay open exciting opportunities for the practical electrosynthesis NH_(3) under ambient conditions.