Poly(ADP-ribose)(PAR),a polymer of ADP-ribose,is synthesized by PAR po-lymerase and is crucial for the survival of cancer cells due to its vital functions in DNA repair and post-translational modifications.Beyond its ...Poly(ADP-ribose)(PAR),a polymer of ADP-ribose,is synthesized by PAR po-lymerase and is crucial for the survival of cancer cells due to its vital functions in DNA repair and post-translational modifications.Beyond its supportive role,PAR also triggers cancer cell death by excessive accumulation of PAR leading to an energy crisis and parthanatos.This phenomenon underscores the potential of targeting PAR regulation as a novel anticancer strategy,and the rationale would present an engaging topic in the field of anticancer research.Therefore,this editorial provides an overview of the mechanisms determining cancer cell fate,emphasizing the central role of PAR.It further introduces promising methods for modulating PAR concentrations that may pave the way for innovative anticancer therapies.展开更多
With the establishment of the immune surveillance mechanism since the 1950s,attempts have been made to activate the immune system for cancer treatment through the discovery of various cytokines or the development of a...With the establishment of the immune surveillance mechanism since the 1950s,attempts have been made to activate the immune system for cancer treatment through the discovery of various cytokines or the development of antibodies up to now.The fruits of these efforts have contributed to the recognition of the 3rd generation of anticancer immunotherapy as the mainstream of cancer treatment.However,the limitations of cancer immunotherapy are also being recognized through the conceptual establishment of cold tumors recently,and colorectal cancer(CRC)has become a major issue from this therapeutic point of view.Here,it is emphasized that non-clinical strategies to overcome the immunosuppressive environment and clinical trials based on these basic investigations are being made on the journey to achieve better treatment outcomes for the treatment of cold CRC.展开更多
Investigation of cancer-specific metabolism has made it possible to establish the principle that atypically reconstituted metabolism is considered a hallmark of cancer due to changes in physiological property.Recently...Investigation of cancer-specific metabolism has made it possible to establish the principle that atypically reconstituted metabolism is considered a hallmark of cancer due to changes in physiological property.Recently,a variety of targets depending on the prompted aerobic glycolysis process,starting from the abnormal uptake of glucose,and cancer-specific metabolism due to impaired mitochondrial function and abnormal expression of drug-metabolizing enzymes have been investigated and discovered.Given that most solid cancers rely on cancer-specific metabolism to support their growth,it is necessary to examine closely the specific processes of cancer metabolism and have a detailed understanding of how cellular metabolism is altered in colorectal cancer(CRC)related to CRC survival and proliferation.The development of key methods to regulate efficiently cancer-specific metabolism in CRC is still in the initial stage.Therefore,targeting cancer-specific metabolism will yield treatable methods that are critical as a new area of development strategies for CRC treatment.展开更多
BACKGROUND The biochemical phenomenon defined as poly adenosine diphosphate(ADP)-ribosylation(PARylation)is essential for the progression of pancreatic cancer.However,the excessive accumulation of poly ADP-ribose(PAR)...BACKGROUND The biochemical phenomenon defined as poly adenosine diphosphate(ADP)-ribosylation(PARylation)is essential for the progression of pancreatic cancer.However,the excessive accumulation of poly ADP-ribose(PAR)induces apoptosis-inducing factor(AIF)release from mitochondria and energy deprivation resulting in the caspase-independent death of cancer cells.AIM To investigate whether sustained calcium supply could induce an anticancer effect on pancreatic cancer by PAR accumulation.METHODS Two pancreatic cancer cell lines,AsPC-1 and CFPAC-1 were used for the study.Calcium influx and mitochondrial reactive oxygen species(ROS)were observed by fluorescence staining.Changes in enzyme levels,as well as PAR accumulation and energy metabolism,were measured using assay kits.AIF-dependent cell death was investigated followed by confirming in vivo anticancer effects by sustained calcium administration.RESULTS Mitochondrial ROS levels were elevated with increasing calcium influx into pancreatic cancer cells.Then,excess PAR accumulation,decreased PAR glycohydrolase and ADP-ribosyl hydrolase 3 levels,and energy deprivation were observed.In vitro and in vivo antitumor effects were confirmed to accompany elevated AIF levels.CONCLUSION This study visualized the potential anticancer effects of excessive PAR accumulation by sustained calcium supply on pancreatic cancer,however elucidating a clear mode of action remains a challenge,and it should be accompanied by further studies to assess its potential for clinical application.展开更多
The use of chemotherapeutic regimens for the treatment of pancreatic cancer is still limited because pancreatic cancer is usually diagnosed at an advanced stage as a refractory disease in which symptoms are difficult ...The use of chemotherapeutic regimens for the treatment of pancreatic cancer is still limited because pancreatic cancer is usually diagnosed at an advanced stage as a refractory disease in which symptoms are difficult to recognize in the early stages.Furthermore,at advanced stages,there are important challenges to achieve clinical benefit and symptom resolution,even with the use of an expanded spectrum of anticancer drugs.Recently,a point of reduced susceptibility to conventional chemotherapies by breast cancer susceptibility gene(BRCA)mutations led to a new perspective for overcoming the resistance of pancreatic cancer within the framework of increased genome instability.Poly(ADP-Ribose)polymerase(PARP)-1 is an enzyme that can regulate intrinsic functions,such as response to DNA damage.Therefore,in an environment where germline mutations in BRCAs(BRCAness)inhibit homologous recombination in DNA damage,resulting in a lack of DNA damage response,a key role of PARP-1 for the adaptation of the genome instability could be further emphasized.Here,we summarized the key functional role of PARP-1 in genomic instability of pancreatic cancer with the BRCAness phenotype and listed clinical applications and outcomes of PARP-1 inhibitors to highlight the importance of targeting PARP-1 activity.展开更多
The development of colorectal cancer(CRC)can result from changes in a variety of cellular systems within the tumor microenvironment.Particularly,it is primarily associated with genomic instability that is the gradual ...The development of colorectal cancer(CRC)can result from changes in a variety of cellular systems within the tumor microenvironment.Particularly,it is primarily associated with genomic instability that is the gradual accumulation of genetic and epigenetic changes consisting of a characteristic set of mutations crucial for pathways in CRC progression.Based on this background,the potential to focus on poly[adenosine diphosphate(ADP)-ribose]polymerase(PARP)-1 and poly-ADP ribosylation(PARylation)as the main causes of malignant formation of CRC may be considered.One of the important functions of PARP-1 and PARylation is its deoxyribonucleic acid(DNA)repair function,which plays a pivotal role in the DNA damage response and prevention of DNA damage maintaining the redox homeostasis involved in the regulation of oxidation and superoxide.PARP-1 and PARylation can also alter epigenetic markers and chromatin structure involved in transcriptional regulation for the oncogenes or tumor suppressor genes by remodeling histone and chromatin enzymes.Given the high importance of these processes in CRC,it can be considered that PARP-1 and PARylation are at the forefront of the pathological changes required for CRC progression.Therefore,this review addresses the current molecular biological features for understanding the multifactorial function of PARP-1 and PARylation in CRC related to the aforementioned roles;furthermore,it presents a summary of recent approaches with PARP-1 inhibition in non-clinical and clinical studies targeting CRC.This understanding could help embrace the importance of targeting PARP-1 and PARylation in the treatment of CRC,which may present the potential to identify various research topics that can be challenged both nonclinically and clinically.展开更多
文摘Poly(ADP-ribose)(PAR),a polymer of ADP-ribose,is synthesized by PAR po-lymerase and is crucial for the survival of cancer cells due to its vital functions in DNA repair and post-translational modifications.Beyond its supportive role,PAR also triggers cancer cell death by excessive accumulation of PAR leading to an energy crisis and parthanatos.This phenomenon underscores the potential of targeting PAR regulation as a novel anticancer strategy,and the rationale would present an engaging topic in the field of anticancer research.Therefore,this editorial provides an overview of the mechanisms determining cancer cell fate,emphasizing the central role of PAR.It further introduces promising methods for modulating PAR concentrations that may pave the way for innovative anticancer therapies.
文摘With the establishment of the immune surveillance mechanism since the 1950s,attempts have been made to activate the immune system for cancer treatment through the discovery of various cytokines or the development of antibodies up to now.The fruits of these efforts have contributed to the recognition of the 3rd generation of anticancer immunotherapy as the mainstream of cancer treatment.However,the limitations of cancer immunotherapy are also being recognized through the conceptual establishment of cold tumors recently,and colorectal cancer(CRC)has become a major issue from this therapeutic point of view.Here,it is emphasized that non-clinical strategies to overcome the immunosuppressive environment and clinical trials based on these basic investigations are being made on the journey to achieve better treatment outcomes for the treatment of cold CRC.
文摘Investigation of cancer-specific metabolism has made it possible to establish the principle that atypically reconstituted metabolism is considered a hallmark of cancer due to changes in physiological property.Recently,a variety of targets depending on the prompted aerobic glycolysis process,starting from the abnormal uptake of glucose,and cancer-specific metabolism due to impaired mitochondrial function and abnormal expression of drug-metabolizing enzymes have been investigated and discovered.Given that most solid cancers rely on cancer-specific metabolism to support their growth,it is necessary to examine closely the specific processes of cancer metabolism and have a detailed understanding of how cellular metabolism is altered in colorectal cancer(CRC)related to CRC survival and proliferation.The development of key methods to regulate efficiently cancer-specific metabolism in CRC is still in the initial stage.Therefore,targeting cancer-specific metabolism will yield treatable methods that are critical as a new area of development strategies for CRC treatment.
文摘BACKGROUND The biochemical phenomenon defined as poly adenosine diphosphate(ADP)-ribosylation(PARylation)is essential for the progression of pancreatic cancer.However,the excessive accumulation of poly ADP-ribose(PAR)induces apoptosis-inducing factor(AIF)release from mitochondria and energy deprivation resulting in the caspase-independent death of cancer cells.AIM To investigate whether sustained calcium supply could induce an anticancer effect on pancreatic cancer by PAR accumulation.METHODS Two pancreatic cancer cell lines,AsPC-1 and CFPAC-1 were used for the study.Calcium influx and mitochondrial reactive oxygen species(ROS)were observed by fluorescence staining.Changes in enzyme levels,as well as PAR accumulation and energy metabolism,were measured using assay kits.AIF-dependent cell death was investigated followed by confirming in vivo anticancer effects by sustained calcium administration.RESULTS Mitochondrial ROS levels were elevated with increasing calcium influx into pancreatic cancer cells.Then,excess PAR accumulation,decreased PAR glycohydrolase and ADP-ribosyl hydrolase 3 levels,and energy deprivation were observed.In vitro and in vivo antitumor effects were confirmed to accompany elevated AIF levels.CONCLUSION This study visualized the potential anticancer effects of excessive PAR accumulation by sustained calcium supply on pancreatic cancer,however elucidating a clear mode of action remains a challenge,and it should be accompanied by further studies to assess its potential for clinical application.
文摘The use of chemotherapeutic regimens for the treatment of pancreatic cancer is still limited because pancreatic cancer is usually diagnosed at an advanced stage as a refractory disease in which symptoms are difficult to recognize in the early stages.Furthermore,at advanced stages,there are important challenges to achieve clinical benefit and symptom resolution,even with the use of an expanded spectrum of anticancer drugs.Recently,a point of reduced susceptibility to conventional chemotherapies by breast cancer susceptibility gene(BRCA)mutations led to a new perspective for overcoming the resistance of pancreatic cancer within the framework of increased genome instability.Poly(ADP-Ribose)polymerase(PARP)-1 is an enzyme that can regulate intrinsic functions,such as response to DNA damage.Therefore,in an environment where germline mutations in BRCAs(BRCAness)inhibit homologous recombination in DNA damage,resulting in a lack of DNA damage response,a key role of PARP-1 for the adaptation of the genome instability could be further emphasized.Here,we summarized the key functional role of PARP-1 in genomic instability of pancreatic cancer with the BRCAness phenotype and listed clinical applications and outcomes of PARP-1 inhibitors to highlight the importance of targeting PARP-1 activity.
文摘The development of colorectal cancer(CRC)can result from changes in a variety of cellular systems within the tumor microenvironment.Particularly,it is primarily associated with genomic instability that is the gradual accumulation of genetic and epigenetic changes consisting of a characteristic set of mutations crucial for pathways in CRC progression.Based on this background,the potential to focus on poly[adenosine diphosphate(ADP)-ribose]polymerase(PARP)-1 and poly-ADP ribosylation(PARylation)as the main causes of malignant formation of CRC may be considered.One of the important functions of PARP-1 and PARylation is its deoxyribonucleic acid(DNA)repair function,which plays a pivotal role in the DNA damage response and prevention of DNA damage maintaining the redox homeostasis involved in the regulation of oxidation and superoxide.PARP-1 and PARylation can also alter epigenetic markers and chromatin structure involved in transcriptional regulation for the oncogenes or tumor suppressor genes by remodeling histone and chromatin enzymes.Given the high importance of these processes in CRC,it can be considered that PARP-1 and PARylation are at the forefront of the pathological changes required for CRC progression.Therefore,this review addresses the current molecular biological features for understanding the multifactorial function of PARP-1 and PARylation in CRC related to the aforementioned roles;furthermore,it presents a summary of recent approaches with PARP-1 inhibition in non-clinical and clinical studies targeting CRC.This understanding could help embrace the importance of targeting PARP-1 and PARylation in the treatment of CRC,which may present the potential to identify various research topics that can be challenged both nonclinically and clinically.