期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A theoretical framework for investigating ecological problems associated with biodiversity conservation in national parks: A case of the Rwenzori Mountains National Park, Uganda
1
作者 Moses Muhumuza Martie Sanders kevin balkwill 《Open Journal of Ecology》 2013年第2期196-204,共9页
Theoretical frameworks play a vital role in research, spelling out the constructs important in the research area, and the relationships between the constructs. An understanding of the theoretical constructs which unde... Theoretical frameworks play a vital role in research, spelling out the constructs important in the research area, and the relationships between the constructs. An understanding of the theoretical constructs which underpin the research provides researchers with a framework, which enables them to understand when, how and why particular phenomena occur. Depending on the type of research, this either allows them to make reasoned predictions, which can be empirically tested during the research or gives direction for the research if it is open-ended and exploratory. Such frameworks not only guide the questions asked and the design of the research, but also help to interpret the data. If the situation being investigated is very complex, involving numerous interlinked variables, it is often difficult to identify a single theoretical framework that is suitable for a particular study. This article uses the case of human ecological behavioural problems associated with the conservation of biodiversity in the Rwenzori Mountains National Park, to show how a theoretical framework to investigate a complex situation was developed. 展开更多
关键词 Theortical Framework ECOLOGICAL PROBLEMS BIODIVERSITY CONSERVATION Investigating NATIONAL Parks Rwenzori
下载PDF
Metal concentrations of insects associated with the South African Ni hyperaccumulator Berkheya coddii (Asteraceae) 被引量:5
2
作者 ROBERT S. BOYD MICHEAL A. DAVIS +1 位作者 MICHAEL A. WALL kevin balkwill 《Insect Science》 SCIE CAS CSCD 2006年第2期85-102,共18页
The high levels of some metals in metal hyperaccumulator plants may be transferred to insect associates. We surveyed insects collected from the South African Ni hyperaccumulator Berkheya coddii to document whole-body ... The high levels of some metals in metal hyperaccumulator plants may be transferred to insect associates. We surveyed insects collected from the South African Ni hyperaccumulator Berkheya coddii to document whole-body metal concentrations (Co, Cr, Cu, Mg, Mn, Ni, Pb, Zn). We also documented the concentrations of these metals in leaves, stems and inflorescences, finding extremely elevated levels of Ni (4 700-16 000μg/g) and high values (5-34μg/g) for Co, Cr, and Pb. Of 26 insect morphotypes collected from B. coddii, seven heteropterans, one coleopteran, and one orthopteran contained relatively high concentrations of Ni (〉 500μg/g). The large number of high-Ni heteropterans adds to discoveries of others (from California USA and New Caledonia) and suggests that members of this insect order may be particularly Ni tolerant. Nymphs of the orthopteran (Stenoscepa) contained 3 500 μg Ni/g, the greatest Ni concentration yet reported for an insect. We also found two beetles with elevated levels of Mg (〉 2 800 μg/g), one beetle with elevated Cu (〉 70 μg/g) and one heteropteran with an elevated level of Mn (〉 200 μg/g). Our results show that insects feeding on a Ni hyperaccumulator can mobilize Ni into food webs, although we found no evidence of Ni biomagnification in either herbivore or carnivore insect taxa. We also conclude that some insects associated with hyperaccumulators can contain Ni levels that are high enough to be toxic to vertebrates. 展开更多
关键词 Berkheya coddii BIOMAGNIFICATION food webs heavy metals hyperaccumulation South Africa
原文传递
Host-herbivore studies of Stenoscepa sp. (Orthoptera:Pyrgomorphidae), a high-Ni herbivore of the South African Ni hyperaccumulator Berkheya coddii (Asteraceae) 被引量:4
3
作者 ROBERT S. BOYD MICHEAL A. DAVIS +1 位作者 MICHAEL A. WALL kevin balkwill 《Insect Science》 SCIE CAS CSCD 2007年第2期133-143,共11页
Nymphs of Stenoscepa sp. feed on leaves of the Ni hyperaccumulator Berkheya coddii at serpentine sites in Mpumalanga Province, South Africa. These sites contain Ni hyperaccumulators, Ni accumulators, and plants with N... Nymphs of Stenoscepa sp. feed on leaves of the Ni hyperaccumulator Berkheya coddii at serpentine sites in Mpumalanga Province, South Africa. These sites contain Ni hyperaccumulators, Ni accumulators, and plants with Ni concentrations in the normal range. We conducted studies to: (i) determine the whole-body metal concentration of nymphs (including those starved to empty their guts); (ii) compare Stenoscepa sp. nymphs against other grasshoppers in the same habitat for whole-body metal concentrations; and (iii)compare the suitability of Ni hyperaccumulator and Ni accumulator plants as food sources for Stenoscepa sp. and other grasshoppers. Stenoscepa nymphs had extremely high whole-body Ni concentrations (3 500μg Ni/g). This was partly due to food in the gut, as starved insects contained less Ni (950 pg Ni/g). Stenoscepa nymphs survived significantly better than other grasshoppers collected from either a serpentine or a non-serpentine site when offered high-Ni plants as food. In a host preference test among four Berkheya species (two Ni hyperaccumulators and two Ni accumulators), Stenoscepa sp, preferred leaves of the Ni hyperaccumulator species. A preference experiment using leaves of three Senecio species (of which one species, Senecio coronatus, was represented by both a Ni hyperaccumulator and a Ni accumulator population) showed that Stenoscepa sp. preferred Ni accumulator Senecio coronatus leaves to all other choices. We conclude that Stenoscepa sp. is extremely Ni-tolerant. Stenoscepa sp. nymphs prefer leaves of hyperaccumulator Berkheya species, but elevated Ni concentration alone does not determine their food preference. We suggest that the extremely high whole-body Ni concentration of Stenoscepa nymphs may affect food web relationships in these serpentine communities. 展开更多
关键词 Berkheya coddii BIOMAGNIFICATION food webs heavy metals hyperaccumulation South Africa
原文传递
Host plant selection of Chrysolina clathrata (Coleoptera: Chrysomelidae) from Mpumalanga, South Africa 被引量:1
4
作者 Robert S. Boyd Micheal A. Davis +1 位作者 Michael A. Wall kevin balkwill 《Insect Science》 SCIE CAS CSCD 2009年第1期81-88,共8页
Hyperaccumulated elements such as Ni may defend plants against some natural enemies whereas other enemies may circumvent this defense. The Ni hyperaccumulator Berkheya coddii Roessler (Asteraceae) is a host plant sp... Hyperaccumulated elements such as Ni may defend plants against some natural enemies whereas other enemies may circumvent this defense. The Ni hyperaccumulator Berkheya coddii Roessler (Asteraceae) is a host plant species for Chrysolina clathrata (Clark), which suffers no apparent harm by consuming its leaf tissue. Beetle specimens collected from B. coddii had a whole body Ni concentration of 260μg/g dry weight, despite consuming leaf material containing 15 100μg Ni/g. Two experiments were conducted with adults of this beetle species: a no-choice experiment and a choice experiment. In the nochoice experiment we offered beetles foliage of one of four speeies ofBerkheya: B. coddii, B. rehmannii Thell. var. rogersiana Thell., B. echinacea (Harv.) O. Hoffm. ex Burtt Davey, and B. insignis (Harv.) Thell. The two former species are Ni hyperaccumulators (defined as having leafNi concentration 〉 1 000 μg/g) whereas the latter have low Ni levels (〈 200 μg/g) in their leaves. Masses of beetles were monitored for 6 days. Choice experiments used growing stem tips from the same Berkheya species, placed into Petri dishes with five Chrysolina beetles in each, and the amount of feeding damage caused on each of the four species was recorded. Beetles in the no-choice experiment gained mass when offered B. coddii, maintained mass on leaves of the other Ni hyperaccumulator (B. rehmannii var. rogersiana), and lost mass when offered non-hyperaccumulator leaves. In the choice test, beetles strongly preferred B. coddii to other Berkheya species. We conclude that C. clathrata may be host-specific on B. coddii. 展开更多
关键词 Berkheya coddii BIOACCUMULATION heavy metals host plant specialist NICKEL
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部